Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "thermal radiation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Novel Method of Thermal Conductivity Measurement Using Stefan-Boltzmann Law
Autorzy:
Leśniewski, W.
Czekaj, E.
Wieliczko, P.
Wawrylak, M.
Powiązania:
https://bibliotekanauki.pl/articles/356312.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
thermal conductivity
thermal radiation
ceramic shell mold
aluminum casting
Opis:
The article presents a novel method that allows measurement of thermal conductivity that is based on Stefan-Boltzmann law. The developed method can be used to determine thermal conductivity of ceramic investment casting molds. The methodology for conducting thermal conductivity tests of ceramic material samples is presented. Knowledge of the value of thermal capacity and thermal conductivity as a function of temperature enables computer simulations of the process of cooling and solidification of liquid metal in a mold.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 1; 311-315
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Passive cooling through the atmospheric window for vehicle temperature control
Autorzy:
Khan, Umara
Zevenhoven, Ron
Powiązania:
https://bibliotekanauki.pl/articles/1955001.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
thermal radiation
passive cooling
vehicle skylight
greenhouse effect
computational fluid dynamics
Opis:
One of the most energy-intensive activities for a vehicle is space air conditioning, for either cooling or heating. Considerable energy savings can be achieved if this can be decoupled from the use of fuel or electricity. This study analyzes the opportunities and effectiveness of deploying the concept of passive cooling through the atmospheric window (i.e. the 8– 14 nm wavelength range where the atmosphere is transparent for thermal radiation) for vehicle temperature control. Recent work at our institute has resulted in a skylight (roof window) design for passive cooling of building space. This should be applicable to vehicles as well, using the same materials and design concept. An overall cooling effect is obtained if outgoing (long wavelength greater than 4 nm) thermal radiation is stronger than the incoming (short wavelength less than 4 nm) thermal radiation. Of particular interest is to quantify the passive cooling of a vehicle parked under direct/indirect sunlight equipped with a small skylight, designed based on earlier designs for buildings. The work involved simulations using commercial computational fluid dynamics software implementing (where possible) wavelengthdependency of thermal radiation properties of materials involved. The findings show that by the use of passive cooling, a temperature difference of up to 7–8 K is obtained with an internal gas flow rate of 0.7 cm/s inside the skylight. A passive cooling effect of almost 27 W/m2 is attainable for summer season in Finland. Comparison of results from Ansys Fluent and COMSOL models shows differences up to about 10 W/m2 in the estimations.
Źródło:
Archives of Thermodynamics; 2021, 42, 3; 25--44
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Triple diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a horizontal plate
Autorzy:
Archana, Manjappa
Gireesha, Bijjanal Jayanna
Prasannakumara, Ballajja Chandrappa
Powiązania:
https://bibliotekanauki.pl/articles/240608.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
triple diffusion
casson nanofluid
nonlinear thermal radiation
buoyancy force
siła wyporu
promieniowanie cieplne
Opis:
The presence of more than one solute diffused in fluid mixtures is very often requested for discussing the natural phenomena such as transportation of contaminants, underground water, acid rain and so on. In the paper, the effect of nonlinear thermal radiation on triple diffusive convective boundary layer flow of Casson nanofluid along a horizontal plate is theoretically investigated. Similarity transformations are utilized to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The impact of several existing physical parameters on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that, modified Dufour parameter and Dufour solutal Lewis number enhances the temperature and solutal concentration profiles respectively.
Źródło:
Archives of Thermodynamics; 2019, 40, 1; 49-69
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Destruction of Moulding Sands with Chemical Binders Caused by the Thermal Radiation of Liquid Metal
Autorzy:
Zych, J.
Mocek, J.
Powiązania:
https://bibliotekanauki.pl/articles/382547.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sand mould
thermal destruction
thermal radiation
heating of mould
loss of strength
masa formierska
rozkład termiczny
promieniowanie cieplne
Opis:
The obtained results of heating of sand moulds with binders by means of a thermal radiation of liquid metal are presented in this study. Standard samples for measuring Rg made of the tested moulding sands were suspended at the lower part of the cover which was covering the crucible with liquid metal (cast iron), placed in the induction furnace. The authors own methodology was applied in investigations. The progressing of the samples surface layers heating process was determined as the heating time function. Samples of a few kinds of moulding sands with chemical binders were tested. Samples without protective coatings as well as samples with such coatings were tested. The influence of the thermal radiation on bending resistance of samples after their cooling was estimated. The influence of several parameters such as: time of heating, distance from the metal surface, metal temperature, application of coatings, were tested. A very fast loss of strength of moulding sands with organic binders was found, especially in cases when the distance between metal and sample surfaces was small and equaled to 10÷15 mm. Then, already after app. 15 seconds of the radiation (at Tmet=1400°C), the resistance decreases by nearly 70%. Generally, moulding sands with organic binders are losing their strength very fast, while moulding sands with water glass at first increase their strength and later slightly lose. The deposition of protective coatings increases the strength of the mould surface layers, however does not allow to retain this strength after the metal thermal radiation.
Źródło:
Archives of Foundry Engineering; 2015, 15, 4; 95-100
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies