Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "static work" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Experimental studies of static and dynamic steel arch support load capacity and sliding joint temperature parameters during yielding
Autorzy:
Pytlik, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1853806.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nośność statyczna
wyrobisko
podpora stalowa
yielding steel arch support
support shackle torque
static and dynamic load capacity
support work
arch acceleration in sliding joints
joint sparking and heating temperature during yielding
Opis:
Difficult geological and mining conditions as well as great stresses in the rock mass result in significant deformations of the rocks that surround the workings and also lead to the occurrence of tremors and rock bursts. Yielding steel arch support has been utilised in the face of hard coal extraction under difficult conditions for many years, both in Poland and abroad. A significant improvement in maintaining gallery working stability is achieved by increasing the yielding support load capacity and work through bolting; however, the use of rock bolts is often limited due to factors such as weak roof rock, significant rock mass fracturing, water accumulation, etc. This is why research and design efforts continue in order to increase yielding steel arch support resistance to both static and dynamic loads. Currently, the most commonly employed type of yielding steel arch support is a support system with frames constructed from overlapping steel arches coupled by shackles. The yield of the steel frame is accomplished by means of sliding joints constructed from sections of various profiles (e.g. V, TH or U-type), which slip after the friction force is exceeded; this force is primarily dependent on the type of shackles and the torque of the shackle screw nuts. This article presents the static bench testing results of ŁP10/V36/4/A, ŁP10/V32/4/A and ŁP10/V29/4/A yielding steel arch support systems formed from S480W and S560W steel with increased mechanical properties. The tests were conducted using 2 and 3 shackles in the joint, which made it possible to compare the load capacities, work values and characteristics of various types of support. The following shackle screw torques were used for the tests: Md = 500 Nm – for shackles utilised in the support constructed from V32 and V36 sections. Md = 400 Nm – for shackles utilised in the support constructed from V29 sections. The shackle screw torques used during the tests were greater compared to the currently utilised standard shackle screw torques within the range of Md = 350-450 Nm. Dynamic testing of the sliding joints constructed from V32 section with 2 and 3 shackles was also performed. The SD32/36W shackles utilised during the tests were produced in the reinforced versions and manufactured using S480W steel. Since comparative testing of a rock bolt-reinforced steel arch support system revealed that the bolts would undergo failure at the point of the support yield, a decision was made to investigate the character of the dynamics of this phenomenon. Consequently, this article also presents unique measurement results for top section acceleration values registered in the joints during the conduction of support tests at fullscale.Filming the yield in the joint using high-speed video and thermal cameras made it possible to register the dynamic characteristics of the joint heating process at the arch contact point as well as the mechanical sparks that accompanied it. Considering that these phenomena have thus far been poorly understood, recognising their significance is of great importance from the perspective of occupational safety under the conditions of an explosive atmosphere, especially in the light of the requirements of the new standard EN ISO 80079-36:2016, harmonised with the ATEX directive.
Źródło:
Archives of Mining Sciences; 2020, 65, 3; 469-491
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies