Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "search algorithms" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Short-term load prediction model combining FEW and IHS algorithm
Autorzy:
Yu, Mingxing
Zhu, Jiazheng
Yang, Li
Powiązania:
https://bibliotekanauki.pl/articles/141740.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
evaluation criteria
exponential fuzzy time series
fitness function
improved harmony search algorithms
load forecasting
optimal interval length
Opis:
:Accurate prediction of power load plays a crucial role in the power industry and provides economic operation decisions for the power operation department. Due to the unpredictability and periodicity of power load, an improved method to deal with complex nonlinear relation was adopted, and a short-term load forecasting model combining FEW (fuzzy exponential weighting) and IHS (improved harmonic search) algorithms was proposed. Firstly, the domain space was defined, the harmony memory base was initialized, and the fuzzy logic relation was identified. Then the optimal interval length was calculated using the training sample data, and local and global optimum were updated by optimization criteria and judging criteria. Finally, the optimized parameters obtained by an IHS algorithm were applied to the FEW model and the load data of the Huludao region (2013) in Northeast China in May. The accuracy of the proposed model was verified using an evaluation criterion as the fitness function. The results of error analysis show that the model can effectively predict short-term power load data and has high stability and accuracy, which provides a reference for application of short-term prediction in other industrial fields.
Źródło:
Archives of Electrical Engineering; 2019, 68, 4; 907-923
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid Mesh Adaptive Direct Search and Genetic Algorithms Techniques for industrial production systems
Autorzy:
Vasant, P.
Powiązania:
https://bibliotekanauki.pl/articles/229988.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
mesh adaptive direct search
genetic algorithms
fitness function
degree of possibility
level of satisfaction
Opis:
In this paper, computational and simulation results are presented for the performance of the fitness function, decision variables and CPU time of the proposed hybridization method of Mesh Adaptive Direct Search (MADS) and Genetic Algorithm (GA). MADS is a class of direct search of algorithms for nonlinear optimization. The MADS algorithm is a modification of the Pattern Search (PS) algorithm. The algorithms differ in how the set of points forming the mesh is computed. The PS algorithm uses fixed direction vectors, whereas the MADS algorithm uses random selection of vectors to define the mesh. A key advantage of MADS over PS is that local exploration of the space of variables is not restricted to a finite number of directions (poll directions). This is the primary drawback of PS algorithms, and therefore the main motivation in using MADS to solve the industrial production planning problem is to overcome this restriction. A thorough investigation on hybrid MADS and GA is performed for the quality of the best fitness function, decision variables and computational CPU time.
Źródło:
Archives of Control Sciences; 2011, 21, 3; 299-312
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel hybrid cuckoo search algorithm for optimization of a line-start PM synchronous motor
Autorzy:
Knypiński, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/2204509.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hybrid cuckoo search algorithm
heuristic algorithms
multi-objective optimization
permanent magnet synchronous motor
PMSM
algorytm kukułki hybrydowy
algorytm Cuckoo
algorytm heurystyczny
optymalizacja wielocelowa
silnik synchroniczny z magnesem trwałym
Opis:
The paper presents a novel hybrid cuckoo search (CS) algorithm for the optimization of the line-start permanent magnet synchronous motor (LSPMSM). The hybrid optimization algorithm developed is a merger of the heuristic algorithm with the deterministic Hooke–Jeeves method. The hybrid optimization procedure developed was tested on analytical benchmark functions and the results were compared with the classical cuckoo search algorithm, genetic algorithm, particle swarm algorithm and bat algorithm. The optimization script containing a hybrid algorithm was developed in Delphi Tiburón. The results presented show that the modified method is characterized by better accuracy. The optimization procedure developed is related to a mathematical model of the LSPMSM. The multi-objective compromise function was applied as an optimality criterion. Selected results were presented and discussed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 1; art. no. e144586
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies