Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pattern extraction" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Determination of the Optimal Threshold Value and Number of Keypoints in Scale Invariant Feature Transform-based Copy-Move Forgery Detection
Autorzy:
Isnanto, R. Rizal
Zahra, Ajub Ajulian
Santoso, Imam
Lubis, Muhammad Salman
Powiązania:
https://bibliotekanauki.pl/articles/227299.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
forgery
Gaussian noise
feature extraction
pattern matching
Euclidean distance
Opis:
The copy-move forgery detection (CMFD) begins with the preprocessing until the image is ready to process. Then, the image features are extracted using a feature-transform-based extraction called the scale-invariant feature transform (SIFT). The last step is features matching using Generalized 2 Nearest-Neighbor (G2NN) method with threshold values variation. The problem is what is the optimal threshold value and number of keypoints so that copy-move detection has the highest accuracy. The optimal threshold value and number of keypoints had determined so that the detection n has the highest accuracy. The research was carried out on images without noise and with Gaussian noise.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 3; 561-569
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Critical exponent analysis applied to surface EMG signals for multifunction myoelectric control
Autorzy:
Phinyomark, A.
Phothisonothai, M.
Phukpattaranont, P.
Limsakul, C.
Powiązania:
https://bibliotekanauki.pl/articles/220544.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biomedical signal processing
electromyography signal
feature extraction
fractal analysis
human machine interface
pattern classification
Opis:
Based on recent advances in non-linear analysis, the surface electromyography (sEMG) signal has been studied from the viewpoints of self-affinity and complexity. In this study, we examine usage of critical exponent analysis (CE) method, a fractal dimension (FD) estimator, to study properties of the sEMG signal and to deploy these properties to characterize different movements for gesture recognition. SEMG signals were recorded from thirty subjects with seven hand movements and eight muscle channels. Mean values and coefficient of variations of the CE from all experiments show that there are larger variations between hand movement types but there is small variation within the same type. It also shows that the CE feature related to the self-affine property for the sEMG signal extracted from different activities is in the range of 1.855∼2.754. These results have also been evaluated by analysis-of-variance (p-value). Results show that the CE feature is more suitable to use as a learning parameter for a classifier compared with other representative features including root mean square, median frequency and Higuchi's method. Most p-values of the CE feature were less than 0.0001. Thus the FD that is computed by the CE method can be applied to be used as a feature for a wide variety of sEMG applications.
Źródło:
Metrology and Measurement Systems; 2011, 18, 4; 645-658
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies