Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nonlinear equations" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
On reconstructing unknown characteristics of a nonlinear system of differential equations
Autorzy:
Kuklin, A.
Maksimov, V.
Nikulina, N.
Powiązania:
https://bibliotekanauki.pl/articles/229625.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nonlinear differential equations
dynamical reconstruction
Opis:
Problems of dynamical reconstruction of unknown characteristics for nonlinear equations described the process of diffusion of innovations through results of observations of phase states are considered. Solving algorithms, which are stable with respect to informational noises and computational errors, are designed. The algorithms are based on the principle of auxiliary models with adaptive controls.
Źródło:
Archives of Control Sciences; 2015, 25, 2; 163-176
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solution of nonlinear stiff differential equations for a three-phase no-load transformer using a Runge–Kutta implicit method
Autorzy:
Baron, Bernard
Kolasińska-Płuska, Joanna
Łukaniszyn, Marian
Spałek, Dariusz
Kraszewski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2172805.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
circuit model of a three-phase transformer
Runge-Kutta implicit methods
stiff nonlinear ordinary diferential equations
Opis:
The paper presents an approach to differential equation solutions for the stiff problem. The method of using the classic transformer model to study nonlinear steady states and to determine the current pulses appearing when the transformer is turned on is given. Moreover, the stiffness of nonlinear ordinary differential state equations has to be considered. This paper compares Runge–Kutta implicit methods for the solution of this stiff problem.
Źródło:
Archives of Electrical Engineering; 2022, 71, 4; 1081--1106
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalization of Linear Rosenstark Method of Feedback Amplifier Analysis to Nonlinear One
Autorzy:
Borys, A.
Zakrzewski, Z.
Powiązania:
https://bibliotekanauki.pl/articles/226780.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
weakly nonlinear amplifiers
nonlinear Rosenstark model
nonlinear distortion analysis
harmonic distortion
constitutive equations
Volterra series
Opis:
Generalization of Linear Rosenstark Method of Feedback Amplifier Analysis to Nonlinear One This paper deals with an extension of the Rosenstark’s linear model of an amplifier to a nonlinear one for the purpose of performing nonlinear distortion analysis. Contrary to an approach using phasors, our method uses the Volterra series. Relying upon the linear model mentioned above, we define first a set of the so-called amplifier’s constitutive equations in an operator form. Then, we expand operators using the Volterra series truncated to the first three components. This leads to getting two representations in the time domain, called in-network and input-output type descriptions of an amplifier. Afterwards, both of these representations are transferred into the multi-frequency domains. Their usefulness in calculations of any nonlinear distortion measure as, for example, harmonic, intermodulation, and/or cross-modulation distortion is demonstrated. Moreover, we show that they allow a simple calculation of the so-called nonlinear transfer functions in any topology as, for example, of cascade and feedback structures and their combinations occurring in single-, two-, nd three-stage amplifiers. Examples of such calculations are given. Finally in this paper, we comment on usage of such notions as nonlinear signals, intermodulation nonlinearity, and on identification of transfer function poles and zeros lying on the frequency axis with related real-valued frequencies.
Źródło:
International Journal of Electronics and Telecommunications; 2014, 60, 1; 48-60
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Studies of Nonlinear Sound Dynamics in Fluids Based on the Caloric Equation of State
Autorzy:
Perelomova, A.
Wojda, P.
Powiązania:
https://bibliotekanauki.pl/articles/177850.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nonlinear acoustics
parameters of nonlinearity
equations of state
Riemann wave
Opis:
The sound speed and parameters of nonlinearity B/A, C/A in a fluid are expressed in terms of coefficients in the Taylor series expansion of an excess internal energy, in powers of excess pressure and density. That allows to conclude about features of the sound propagation in fluids, the internal energy of which is known as a function of pressure and density. The sound speed and parameters of nonlinearity in the mixture consisting of boiling water and its vapor under different temperatures, are evaluated as functions of mass concentration of the vapor. The relations analogous to that in the Riemann wave in an ideal gas are obtained in a fluid obeying an arbitrary equation of state. An example concerns the van der Waals gases. An excess pressure in the reflected wave, which appears when standard or nonlinear absorption in a fluid takes place, is evaluated in an arbitrary fluid.
Źródło:
Archives of Acoustics; 2010, 35, 4; 619-633
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the region of attraction of dynamical systems: Application to Lorenz equations
Autorzy:
Hammami, M. A.
Rettab, N. H.
Powiązania:
https://bibliotekanauki.pl/articles/229791.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nonlinear dynamical systems
Lyapunov function
basin of attraction
Lorenz equations
Opis:
Many nonlinear dynamical systems can present a challenge for the stability analysis in particular the estimation of the region of attraction of an equilibrium point. The usual methodis based on Lyapunov techniques. For the validity of the analysis it should be supposed that the initial conditions lie in the domain of attraction. In this paper, we investigate such problem for a class of dynamical systems where the origin is not necessarily an equilibrium point. In this case, a small compact neighborhood of the origin can be estimated as an attractor for the system. We give a method to estimate the basin of attraction based on the construction of a suitable Lyapunov function. Furthermore, an application to Lorenz system is given to verify the effectiveness of the proposed method.
Źródło:
Archives of Control Sciences; 2020, 30, 3; 389-409
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies