Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural networks control" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Smart control based on neural networks for multicellular converters
Autorzy:
Laidi, Kamel
Bouchhida, Ouahid
Nibouche, Mokhtar
Benmansour, Khelifa
Powiązania:
https://bibliotekanauki.pl/articles/1841217.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
multicellular converters
neural networks
smart control
Opis:
A smart control based on neural networks for multicellular converters has been developed and implemented. The approach is based on a behavioral description of the different converter operating modes. Each operating mode represents a well-defined configuration for which an operating zone satisfying given invariance conditions, depending on the capacitors’ voltages and the load current of the converter, is assigned. A control vector, whose components are the control signals to be applied to the converter switches is generated for each mode. Therefore, generating the control signals becomes a classification task of the different operating zones. For this purpose, a neural approach has been developed and implemented to control a 2-cell converter then extended to a 3-cell converter. The developed approach has been compared to super-twisting sliding mode algorithm. The obtained results demonstrate the approach effectiveness to provide an efficient and robust control of the load current and ensure the balancing of the capacitors voltages.
Źródło:
Archives of Electrical Engineering; 2021, 70, 3; 531-550
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Elman neural network for modeling and predictive control of delayed dynamic systems
Autorzy:
Wysocki, A.
Ławryńczuk, M.
Powiązania:
https://bibliotekanauki.pl/articles/229646.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dynamic models
process control
model predictive control
neural networks
Elman neural network
delayed systems
Opis:
The objective of this paper is to present a modified structure and a training algorithm of the recurrent Elman neural network which makes it possible to explicitly take into account the time-delay of the process and a Model Predictive Control (MPC) algorithm for such a network. In MPC the predicted output trajectory is repeatedly linearized on-line along the future input trajectory, which leads to a quadratic optimization problem, nonlinear optimization is not necessary. A strongly nonlinear benchmark process (a simulated neutralization reactor) is considered to show advantages of the modified Elman neural network and the discussed MPC algorithm. The modified neural model is more precise and has a lower number of parameters in comparison with the classical Elman structure. The discussed MPC algorithm with on-line linearization gives similar trajectories as MPC with nonlinear optimization repeated at each sampling instant.
Źródło:
Archives of Control Sciences; 2016, 26, 1; 117-142
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stator winding fault diagnosis of induction motor operating under the field-oriented control with convolutional neural networks
Autorzy:
Skowron, M.
Wolkiewicz, M.
Tarchała, G.
Powiązania:
https://bibliotekanauki.pl/articles/200241.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
diagnostics
stator faults
field-oriented control
convolutional neural networks
Opis:
In this paper deep neural networks are proposed to diagnose inter-turn short-circuits of induction motor stator windings operating under the Direct Field Oriented Control method. A convolutional neural network (CNN), trained with a Stochastic Gradient Descent with Momentum method is used. This kind of deep-trained neural network allows to significantly accelerate the diagnostic process compared to the traditional methods based on the Fast Fourier Transform as well as it does not require stationary operating conditions. To assess the effectiveness of the applied CNN-based detectors, the tests were carried out for variable load conditions and different values of the supply voltage frequency. Experimental results of the proposed induction motor fault detection system are presented and discussed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2020, 68, 5; 1039-1048
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sensorless DTC of induction motor using improved neural network switching state selector controller
Autorzy:
Messaif, I.
Berkouk, E. M.
Saadia, N.
Powiązania:
https://bibliotekanauki.pl/articles/229864.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
direct torque control
NPC three-level inverter
switching table
neural point potential
neural networks
induction motor
Opis:
The paper deals with development of sensorless Direct Torque Control (DTC) system based on neural network. This network is built to solve the task of proper switching states selection based on information about electromagnetic torque and stator flux (position and magnitude) of induction motor. In fact, this technique which uses conventional switching table is not convenient for one-line and real time control for its high computation time. In order to avoid this problem a solution based on neural network is proposed. Well trained Artificial Neural Network structure can replace successfully the switching table. However, in the Neutral-Point-Clamped topology, it has an inherent problem of Neutral Point Potential (NPP) variation. In this way, a Neural Network-Direct Torque Control technique has been applied and the estimated value of the Neutral Point Potential is used, which is calculated by motor currents. This control strategy offers the possibility of selecting appropriate switching state to achieve the control of Neutral Point Potential. Simulation results verify the validity of the proposed method.
Źródło:
Archives of Control Sciences; 2010, 20, 4; 435-456
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recurrent Neural Networks for Predictive Maintenance of Mill Fan Systems
Autorzy:
Koprinkova-Hristova, P. D.
Hadjiski, M. B.
Doukovska, L. A.
Beloreshki, S. V.
Powiązania:
https://bibliotekanauki.pl/articles/226304.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
technical diagnosis
Thermal Power Plant (TPP)
Recurrent Neural Networks (RNN)
distributed control system (DCS)
predictive maintenance
Opis:
In the present paper we focus on online monitoring system for predictive maintenance based on sensor automated inputs. Our subject was a device from Maritsa East 2 power plant - a mill fan. The main sensor information we have access to is based on the vibration of the nearest to the mill rotor bearing block. Our aim was to create a (nonlinear) model able to predict on time possible changes in vibrations tendencies that can be early signal for system work deterioration. For that purpose, we compared two types of recurrent neural networks: historical Elman architecture and a recently developed kind of RNN named Echo stet networks (ESN). The preliminary investigations showed better approximation and faster training abilities of ESN in comparison to the Elman network. Direction of future work will be increasing of predications time horizon and inclusion of our predictor at lower level of a complex predictive maintenance system.
Źródło:
International Journal of Electronics and Telecommunications; 2011, 57, 3; 401-406
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of IQT on research in ICT
Autorzy:
Bednarski, Bogdan J.
Lepak, Łukasz E.
Łyskawa, Jakub J.
Pieńczuk, Paweł
Rosoł, Maciej
Romaniuk, Ryszard S.
Powiązania:
https://bibliotekanauki.pl/articles/2055259.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ICT
control theory
IQT
Information Quantum Technologies
Quantum 2.0
applications of IQT
quantum systems
qubit neural networks
quantum time series forecasting;
Quantum Reinforcement Learning
Opis:
This paper is written by a group of Ph.D. students pursuing their work in different areas of ICT, outside the direct area of Information Quantum Technologies IQT. An ambitious task was undertaken to research, by each co-author, a potential practical influence of the current IQT development on their current work. The research of co-authors span the following areas of ICT: CMOS for IQT, QEC, quantum time series forecasting, IQT in biomedicine. The intention of the authors is to show how quickly the quantum techniques can penetrate in the nearest future other, i.e. their own, areas of ICT.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 2; 259--266
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies