Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multidimensional data analysis." wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis
Zmiany przepływów i jakości wód zbiornika zaporowego w zlewni rzeki Mała Panew (południowa Polska) określone z zastosowaniem wielowymiarowych analiz danych
Autorzy:
Wiatkowski, Mirosław
Wiatkowska, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/204806.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
water reservoir
river
water flow
water quality
multidimensional data analysis
principal component analysis
PCA
zbiornik wodny
rzeka
przepływ wody
jakość wody
wielowymiarowa analiza danych
analiza głównych składowych
Opis:
Multidimensional exploratory techniques, such as the Principal Component Analysis (PCA), have been used to analyze long-term changes in the flow regime and quality of water of the lowland dam reservoir Turawa (south-west Poland) in the catchment of the Mała Panew river (a tributary of the Odra). The paper proves that during the period of 1998–2016 the Turawa reservoir was equalizing the river’s water flow. Moreover, various physicochemical water quality indicators were analyzed at three measurement points (at the tributary’s mouth into the reservoir, in the reservoir itself and at the outflow from the reservoir). The water quality assessment was performed by analyzing physicochemical indicators such as water temperature, TSS, pH, dissolved oxygen, BOD5, NH4+, NOˉ3, NOˉ2, N, PO43-, P, electrolytic conductivity, DS, SO42- and Clˉ. Furthermore, the correlations between all these water quality indicators were analyzed statistically at each measurement point, at the statistical signifi cance level of p ≤ 0.05. PCA was used to determine the structures between these water quality variables at each measurement point. As a result, a theoretical model was obtained that describes the regularities in the relationships between the indicators. PCA has shown that biogenic indicators have the strongest infl uence on the water quality in the Mała Panew. Lastly, the differences between the averages of the water quality indicators of the infl owing and of the outflowing water were considered and their signifi cance was analyzed. PCA unveiled structure and complexity of interconnections between river flow and water quality. The paper shows that such statistical methods can be valuable tools for developing suitable water management strategies for the catchment and the reservoir itself.
Eksploracyjne techniki wielowymiarowe, takie jak analiza składowych głównych (PCA), zostały zastosowane w celu analizy wieloletnich (lata 1998-2016) zmian przepływów i jakości wód nizinnego zbiornika zaporowego Turawa (południowo-zachodnia Polska) w zlewni rzeki Mała Panew (dopływ rzeki Odry). W pracy wykazano, że w okresie 1998-2016 zbiornik Turawa w znacznym stopniu wyrównywał przepływy wód rzeki Mała Panew. Analizowano również wskaźniki fizykochemiczne jakości wód na trzech stanowiskach pomiarowych (dopływ do zbiornika, w zbiorniku i na odpływie ze zbiornika). Ocenę jakości wody wykonano analizując wskaźniki fizykochemiczne takie jak: temperaturę wody, zawiesinę ogólną, pH, tlen rozpuszczony,BOD5, NH4+, NOˉ3, NOˉ2, N, PO43-, P, przewodność elektrolityczną, substancje rozpuszczone, siarczany SO42- - i chlorki Clˉ. Analizie statystycznej poddano również związki korelacyjne pomiędzy wszystkimi wskaźnikami jakości wody na poszczególnych stanowiskach pomiarowych, istotne statystycznie na poziomie p<0,05. W celu wykrycia struktur zachodzących między wskaźnikami jakości wody na każdym stanowisku pomiarowym, zastosowano analizę składowych głównych (PCA) (Principal Components Analysis), w efekcie której otrzymano teoretyczny model opisujący prawidłowości w zależnościach między analizowanymi wskaźnikami jakości wód. Analiza składowych głównych (PCA) wykazała, że jakość wody rzeki Mała Panew najsilniej determinowały wskaźniki biogenne. Analizowano również istotność różnic między średnimi stężeniami wskaźników jakości wody dopływającej do zbiornika i wody odpływającej ze zbiornika. Na podstawie zastosowanych metod eksploracyjnej analizy danych możliwe było rozpoznanie struktur i złożoności powiązań zachodzących pomiędzy przepływami wód oraz wskaźnikami jakości wód w rzece Mała Panew. W pracy wykazano, że metody te mogą stanowić niezbędne narzędzie w zakresie podejmowania strategicznych decyzji i rozwiązań w zakresie racjonalnego gospodarowania wodą zarówno w zlewni zbiornika jak i w zbiorniku wodnym.
Źródło:
Archives of Environmental Protection; 2019, 45, 1; 26-41
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multidimensional data visualization by means of self-organizing Kohonen maps to evaluate classification possibilities of various coal types
Zastosowanie wizualizacji wielowymiarowych danych za pomocą sieci Kohonena do oceny możliwości klasyfikacji różnych typów węgla
Autorzy:
Jamróz, D.
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/220033.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Kohonen maps
grained material analysis
coal
multidimensional data
multidimensional visualization methods
sieci Kohonena
analiza materiału uziarnionego
dane wielowymiarowe
metody wizualizacji wielowymiarowej
Opis:
Multidimensional data visualization methods are a modern tool allowing to classify some analysed objects. In the case of grained materials e.g. coal, many characteristics have an influence on the material quality. The paper presents the possibility of applying visualization techniques for coal type identification and determination of significant differences between various types of coal. To achieve this purpose, the method of Kohonen maps was applied by means of which three types of coal – 31, 34.2 and 35 (according to Polish classification of coal types) were investigated. It was stated that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials.
Metody wizualizacji wielowymiarowych danych są nowoczesnym narzędziem umożliwiającym klasyfikację analizowanych obiektów, którymi mogą być różnego typu dane opisujące wybrane zjawisko lub materiał. W przypadku materiałów uziarnionych, jakim jest np. węgiel, wiele cech ma wpływ na jakość materiału, tj. np. gęstość, wielkość ziaren, ciepło spalania, zawartość popiołu, zawartość siarki itp. Na potrzeby artykułu przeprowadzono rozdział węgli z trzech wybranych kopalni węgla kamiennego, zlokalizowanych w Górnośląskim Okręgu Przemysłowym. Każda z tych kopalni pracuje na innego typu węglu. W tym przypadku były to węgle o typach 31, 34.2 oraz 35 (według polskiej klasyfikacji typów węgla). Najpierw, materiał został podzielony na klasy ziarnowe a następnie za pomocą rozdziale w cieczy ciężkiej (roztwór chlorku cynku) na frakcje gęstościowe. Dla tak przygotowanego materiału przeprowadzono następnie analizy chemiczne mające na celu określenie takich parametrów, jak zawartość siarki, zawartość popiołu, zawartość części lotnych, ciepło spalania oraz wilgotność analityczną. W ten sposób, dla każdej klaso-frakcji uzyskano bogate charakterystyki badanego materiału. Nasuwa się więc pytanie, czy możliwa jest identyfikacja typu węgla za pomocą dostępnych danych. W tym celu zastosowano wielowymiarową technikę wizualizacji statystycznej. Istnieje wiele metod takiej wizualizacji, z których kilka było już przedmiotem wcześniejszych publikacji autorów. W tym wypadku autorzy zdecydowali się zastosować metodę sieci Kohonena. Metoda ta została opisana w rozdziale 2 pracy, gdzie oprócz opisu teoretycznego podano również główne wzory stosowane podczas modelowania tą metodą (wzory (1)-(5)). Do zbadania postawionego problemu wykorzystano optymalną liczbę iteracji i optymalny czas uczenia sieci. Pewnym problemem pojawiającym się przy takiej wizualizacji jest konieczność doboru parametrów, w celu uzyskania widoku, który w sposób czytelny prezentuje poszukiwane przez nas informacje. Należy wspomnieć, że w trakcie prowadzonych eksperymentów uzyskiwano widoki przy użyciu sieci neuronowej o wielkości od 10 × 10 do 100 × 100 neuronów. Widoki były uzyskiwane przy wartości parametru MAX_DISTANCE od 1 do wielkości sieci oraz parametru ITER od 1 do 5000. Eksperymenty były prowadzone dla różnych wzorów określających modyfikację wag. Przedstawione w pracy wyniki stanowią najbardziej czytelne z uzyskanych. Wizualizacja wielowymiarowa przy użyciu sieci Kohonena pozwala stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35, przy czym nawet zobrazowanie 3 typów węgla na jednym rysunku pozwala stwierdzić, że neurony reprezentujące próbki węgla danego typu gromadzą się w skupiskach, które można od siebie odseparować. Z tego wynika, że dane zawierają informacje wystarczające do prawidłowej klasyfikacji węgla. Zauważyć jednak warto, że przedstawienie przy pomocy sieci Kohonena, danych reprezentujących różne typy węgla parami, pozwala uzyskać jeszcze bardziej czytelne wyniki. Najlepsze efekty osiągnięto dla sieci o 40 wierszach oraz 40 kolumnach neuronów, co łącznie dało liczbę 1600 neuronów, zaś czytelność wyników rośnie wraz z postępem uczenia sieci neuronowej (wzrostem parametru ITER). Przeprowadzone doświadczenia w pełni potwierdzają, że zastosowana metoda może być z powodzeniem wykorzystana w badaniach jakościowych związanych z różnego typu materiałami uziarnionymi, w tym również węglem. Badania w tym zakresie są kontynuowane.
Źródło:
Archives of Mining Sciences; 2015, 60, 1; 39-50
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies