Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multi-layer neural network" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Dynamic fire risk prevention strategy in underground coal gasification processes by means of artificial neural networks
Dynamiczna strategia zapobiegania ryzyku pożarowemu z użyciem sztucznych sieci neuronowych w procesach podziemnego zgazowania węgla
Autorzy:
Krzemień, Alicja
Powiązania:
https://bibliotekanauki.pl/articles/218921.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dynamiczna strategia zapobiegania ryzyku
prewencja ryzyka pożarowego
podziemne zgazowanie węgla (PZW)
dynamic alarm strategy
fire risk prevention
Generalized Regression Neural Network
Multi-Layer Feedforward Networks (MLFN)
Multivariate Adaptative Regression Splines (MARS)
underground coal gasification (UCG)
Opis:
Based on data collected during an UCG pilot-scale experiment that took place during 2014 at Wieczorek mine, an active mine located in Upper Silesia (Poland), this research focuses on developing a dynamic fire risk prevention strategy addressing underground coal gasification processes (UCG) within active mines, preventing economic and physical losses derived from fires. To achieve this goal, the forecasting performance of two different kinds of artificial neural network models (generalized regression and multi-layer feedforward) are studied, in order to forecast the syngas temperature at the georeactor outlet with one hour of anticipation, thus giving enough time to UCG operators to adjust the amount and characteristics of the gasifying agents if necessary. The same model could be used to avoid undesired drops in the syngas temperature, as low temperature increases precipitation of contaminants reducing the inner diameter of the return pipeline. As a consequence the whole process of UGC might be stopped. Moreover, it could allow maintaining a high temperature that will lead to an increased efficiency, as UCG is a very exothermic process. Results of this research were compared with the ones obtained by means of Multivariate Adaptative Regression Splines (MARS), a non-parametric regression technique able to model non-linearities that cannot be adequately modelled using other regression methods. Syngas temperature forecast with one hour of anticipation at the georeactor outlet was achieved successfully, and conclusions clearly state that generalized regression neural networks (GRNN) achieve better forecasts than multi-layer feedforward networks (MLFN) and MARS models.
Przedstawione w niniejszej pracy badania koncentrują się na opracowaniu dynamicznej strategii zapobiegania ryzyku pożarowemu w procesach podziemnego zgazowania węgla (PZW) w czynnych kopalniach. Celem badań jest zapobieganie ekonomicznym i fizycznym stratom wynikającym z pożarów. W pracy wykorzystano dane zebrane podczas pilotowego eksperymentu podziemnego zgazowania węgla, który odbył się w 2014 r. w czynnej Kopalni Węgla Kamiennego „Wieczorek”, zlokalizowanej na Górnym Śląsku. W artykule przeanalizowano działanie dwóch różnych modeli sztucznych sieci neuronowych, tj. sieci neuronowych realizujących uogólnione regresje GRNN oraz wielowarstwowych sieci perceptronowych MLFN, w celu prognozowania temperatury gazu syntezowego na wyjściu z georeaktora z godzinnym wyprzedzeniem. Informacja na temat temperatury na godzinę „do przodu” daje wystarczająco dużo czasu operatorowi procesu PZW na dostosowanie ilości i właściwości czynników zgazowujących do zaistniałej sytuacji. Ten sam model można zastosować do uniknięcia niepożądanych spadków temperatury gazu syntezowego. Niska temperatura gazu sprzyja wytrącaniu się osadu (substancji smolistych), powodując zmniejszanie średnicy rurociągu odbioru gazu, co w konsekwencji może prowadzić do całkowitego zatrzymania procesu zgazowania. Model pozwala również na utrzymanie wysokiej temperatury, która prowadzi do zwiększonej wydajności procesu PZW, szczególnie biorąc pod uwagę, że PZW jest procesem bardzo egzotermicznym. Wyniki zrealizowanych badań porównano z rezultatami uzyskanymi za pomocą modelu MARS – nieparametrycznej metody regresji zdolnej do modelowania zależność nieliniowych, których nie można odpowiednio modelować przy użyciu innych metod regresji. Prognoza temperatury gazu na godzinę „do przodu” na wylocie georeaktora została osiągnięta z powodzeniem, a wnioski jasno pokazują, że sieci neuronowe realizujące uogólnione regresje (GRNN – Generalized Regression Neural Networks) osiągają lepsze rezultaty niż wielowarstwowe sieci jednokierunkowe (MLFN – Multi-Layer Feedforward Networks) i modele MARS (Multivariate Adaptative Regression Splines).
Źródło:
Archives of Mining Sciences; 2019, 64, 1; 3-19
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies