Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mine safety" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Explosion testing of a polycarbonate safe haven wall
Badanie ściany ochronnej wykonanej z poliwęglanów dla strefy bezpieczeństwa w warunkach wybuchu
Autorzy:
Perry, K. A.
Meyr, R. A.
Powiązania:
https://bibliotekanauki.pl/articles/219205.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
bezpieczeństwo kopalni
górnictwo węgla
zabezpieczenie przed wybuchem
badania w dziedzinie górnictwa
mine safety
coal mining
explosion resistance
mining research
Opis:
The MINER Act of 2006 was enacted by MSHA following the major mining accidents and required every underground coal mine to install refuge areas to help prevent future fatalities of trapped miners in the event of a disaster where the miners cannot escape. A polycarbonate safe haven wall for use in underground coal mines as component of a complete system was designed and modeled using finite element modeling in ANSYS Explicit Dynamics to withstand the MSHA required 15 psi (103.4 kPa) blast loading spanning 200 milliseconds. The successful design was constructed at a uniform height in both half-width scale and quarter-width scale in the University of Kentucky Explosives Research Team’s (UKERT) explosives driven shock tube for verification of the models. The constructed polycarbonate walls were tested multiple times to determine the walls resistance to pressures generated by an explosion. The results for each test were analyzed and averaged to create one pressure versus time waveform which was then imported into ANSYS Explicit Dynamics and modeled to compare results to that which was measured during testing for model validation. This paper summarizes the results.
W następstwie poważnych wypadków w kopalniach, w roku 2006 MSHA uchwaliła Ustawę Górniczą na mocy której wszystkie kopalnie zobowiązane zostały do wyznaczenia odpowiednich stref bezpieczeństwa dla uniknięcia w przyszłości ofiar śmiertelnych wśród górników uwięzionych w kopalni w przypadku katastrofy uniemożliwiającej ucieczkę. Zaprojektowano ścianę ochronną wykonana z poliwęglanów zabezpieczającą strefę bezpieczeństwa w kopalniach podziemnych, jako element całego systemu zabezpieczeń. Ścianę zaprojektowano i modelowano w oparciu o metodę elementów skończonych z wykorzystaniem pakietu ANSYS Explicit Dynamics. Według wymogów MSHA ściana winna wytrzymywać ciśnienia 15 psi (103.4 kPa) w trakcie najsilniejszej fali wybuchu trwającej 200 milisekund. Odpowiedni projekt wykonano w odpowiedniej skali: połowie i ćwierci wysokości, jako obiekt jednolity. Modele zweryfikowane zostały przez badaczy z Uniwersytetu w Kentucky, z wykorzystaniem odpowiedniego tunelu testowego. Ściany wykonane z poliwęglanów zostały wielokrotnie przebadane aby określić ich wytrzymałość na ciśnienia powstające w trakcie wybuchu. Wyniki każdego z testów zostały przeanalizowane i uśrednione a otrzymany przebieg ciśnienia w funkcji czasu został zaimportowany do pakietu ANSYS Explicit Dynamice i zamodelowany, tym samym umożliwiając jego porównanie do wyników pomiarów wykonanych w ramach walidacji modelu. W niniejszej pracy zestawiono uzyskane wyniki prac.
Źródło:
Archives of Mining Sciences; 2016, 61, 4; 809-821
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic Error Correction of Methane Sensor
Autorzy:
Krupanek, B.
Bogacz, R.
Powiązania:
https://bibliotekanauki.pl/articles/227009.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dynamic error correction
methane sensor
pellistor sensor
safety in mine
Opis:
Coal mine methane is a term given to the methane gas produced or emitted in association with coal mining activities either from the coal seam itself or from other gassy formations underground. The primary reason for measuring methane is to improve the safety of the mines. In recent years, there have been many fatalities in underground coal mine explosions in which methane was a contributing factor. The rapid detection of methane is very important from the point of view of safety of mine workers. This paper presents a concept of fast methane detection by reconstituting its concentration in dynamic states.
Źródło:
International Journal of Electronics and Telecommunications; 2014, 60, 4; 287-289
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Innovative technology of tight liquidation of workings on the example of the Wieliczka Salt Mine
Autorzy:
Gonet, Andrzej
Stryczek, Stanisław Antoni
Powiązania:
https://bibliotekanauki.pl/articles/1853908.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
kopalnia soli
bezpieczeństwo kopalni
Kopalnia Soli Wieliczka
salt mine
water hazard
safety pillar
Mine Wieliczka
Opis:
The authors of the paper describe the way in which the longitudinal working Gussmann was mined in level V and the longitudinal working Kosocice in level VI, which in both cases resulted in a water flux from behind the northern boundary of the salt deposit. Only after concrete dams were seated on both levels, the brine flux was stopped leaving a direct contact of the dams with the pressurized water around the mine. For the sake of controlling water beyond the dams, steel pipelines were conducted through both dams and equipped with gauges before the dams. Their use in a saline environment, the developing corrosion increased the possibility that the tightness of the pipelines would be damaged. For this reason a decision was made to protect the mine by making a tight reconstruction of the safety pillar in both levels along the longitudinal working for about 600 m from the dams eastwards. For this purpose the pipeline injection method was applied. As the volume of voids to be tightly filled equaled to about 3800 m3, the task had to be divided into stages. Because of considerable distances of the liquidated workings from the closest shaft, the sealing slurries were prepared in a special injection center on the surface from where they were transported to the destination with a pumping pipeline through the Kościuszko shaft. The most important aspect of liquidating the end parts of the longitudinal working was to properly select the sealing slurries in view of their best cooperation with the rock mass, and such parameters as tightness, durability and cost. At the end stage of works, both longitudinal workings were equipped with dams, which were sealed up with the hole injection method. The innovative technology was implemented in the Wieliczka Salt Mine to reconstruct the safety pillar in levels VI and V in the most westward workings, the mine was shortened by about 600 m, the length of the ventilation system was reduced, systematic observations and pressure read-outs in dams 3 and 4 were systematically eliminated in dams 3 and 4. In this way the costs were lowered and safety of the mine improved.
Źródło:
Archives of Mining Sciences; 2021, 66, 1; 3-12
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New reconstruction technologies of safety pillar in mines
Nowoczesne technologie odbudowy filara bezpieczeństwa w kopalniach
Autorzy:
Gonet, A.
Stryczek, S.
Brudnik, K.
Powiązania:
https://bibliotekanauki.pl/articles/219285.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
filar bezpieczeństwa
kopalnia
iniekcja otworowa
iniekcja rurociągowa
safety pillar
mine
pipeline injection
hole injection
Opis:
Safety pillars are made around mines as a protection measure. This is especially important in salt mines where the surrounding waters are most hazardous. Without maintaining safe conditions the mine may be water-flooded as it was the case in one of the Polish mine “Wapno“. An original technology linking pipeline injection and hole injection methods has been used for the reconstruction of a safety pillar in the Salt Mine “Wieliczka“. This solution turned out to be successful when on 13 April 1992 the mine was saved from flooding after a disastrous water flux to the transverse working Mina. The presented technology can be efficiently used in various mines at the stage of designing, though their exploitation to the closing stage.
Dla zapewnienia bezpieczeństwa wokół każdej kopalni należy utworzyć filar ochronny. Szczególnie jest to istotne w kopalniach soli, dla których otaczająca je woda jest największym zagrożeniem. Nie zachowanie odpowiednich warunków może się skończyć nawet zatopieniem kopalni, co miało miejsce nawet w Polsce - Kopalnia „Wapno”. W pracy opisano oryginalną technologię iniekcji rurociągowej połączoną z iniekcją otworową zastosowaną do odbudowy filara ochronnego w Kopalni Soli „Wieliczka”, która pozwoliła ją uratować przed zatopieniem po katastrofalnym dopływie wody, który wystąpił 13 kwietnia 1992 roku w poprzeczni Mina. Przedstawiona technologia może być z powodzeniem zastosowana w różnych kopalniach i to na etapie od ich budowy, poprzez czas eksploatacji aż na etapie likwidacji kończąc.
Źródło:
Archives of Mining Sciences; 2012, 57, 2; 403-412
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A reliable method of completing and compensating the results of measurements of flow parameters in a network of headings
O pewnej metodzie uzupełniania i wyrównywania wyników pomiarów parametrów przepływu w sieci wyrobisk górniczych
Autorzy:
Dziurzyński, W.
Krach, A.
Pałka, T.
Powiązania:
https://bibliotekanauki.pl/articles/220068.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
measurements in headings
database
forecasting the ventilation process
safety of the mine ventilation system
pomiary w wyrobiskach
baza danych
prognozowanie procesu przewietrzania
bezpieczeństwo systemu wentylacji kopalni
Opis:
Forecasting a ventilation process is based on two factors: using a validated software (Dziurzyński et al., 2011; Pritchard, 2010) and a properly prepared database encompassing the parameters describing the flow of air and gases, compatible with the adopted mathematical model of the VentGraph software (Dziurzyński, 2002). With a body of measurement data and a mathematical model for computer calculations and air flow simulation at our disposal, we proceed to develop a numerical model for a chosen network of mine headings. Preparing a numerical model of a ventilation network of a given mine requires providing a collection of data regarding the structure of the network and the physical properties of its elements, such as headings, fans, or stoppings. In the case of fire simulations, it is also necessary to specify the parameters describing the seat of a fire and the properties of the rocks of which the rock mass is comprised. The methods which are currently applied to this task involve manual ventilation measurements performed in headings; the results obtained in the course of these measurements constitute a basis for determining physical parameters, such as the aerodynamic resistance of a heading, density of the flow of air, or natural depression. Experience shows that – due to difficulties regarding accessibility of headings, as well as the considerable lengths of the latter – there are some nodes and headings in mines where such measurements are not performed. Thus, an attempt was made to develop a new methodology that would provide the missing data on the basis of some other available information concerning – for example – the air density, the geometry of headings and elevations. The adopted methodology suggests that one should start with balancing the air mass fluxes within the structure of a network of headings. The next step is to compile a database concerning the pressure values in the network nodes, based on the measurement results – and provide the missing pressure values on the basis of the available results of measurements carried out in adjacent nodes, as well as the pressure value calculated on the basis of the heading geometry and the given volumetric flow rate. The present paper discusses the methodology of compensating and balancing the volumetric air flow rates within a network of headings (Chapter 2) and the methodology of determining pressure values (Chapter 3) in the nodes of the network. The developed calculation algorithms – verified by means of sample calculations performed for a selected area of a mine ventilation network – were introduced into the VentGraph software system. The calculation results were presented in tabular form. The Summary section discusses the minuses and pluses of the adopted methodology.
Podstawą prognozy procesu przewietrzania jest posługiwanie się zwalidowanym programem komputerowym (Dziurzyński i in., 2011; Pritchard, 2010) oraz poprawnie przygotowaną bazą danych zawierającą parametry opisujące przepływ powietrza i gazów, zgodną z przyjętym modelem matematycznym w programie komputerowym VentGraph (Dziurzyński, 2002). Dysponując bazą danych pomiarowych oraz przyjętym do obliczeń komputerowych i symulacji procesu przewietrzania modelem matematycznym przystępujemy do opracowania modelu numerycznego dla wybranej sieci wyrobisk kopalni. Przygotowanie modelu numerycznego sieci wentylacyjnej danej kopalni wymaga dostarczenia zestawu danych dotyczących struktury sieci i własności fizycznych jej elementów, tj. wyrobisk, wentylatorów, tam, a przy symulacji pożaru dodatkowo wymagane jest podanie parametrów opisujących ognisko pożaru oraz własności skał górotworu. Obecna praktyka postępowania polega na tym, że wykonuje się ręczne pomiary wentylacyjne w wyrobiskach górniczych, a uzyskane wyniki stanowią podstawę do wyznaczenia parametrów fizycznych takich jak: opór aerodynamiczny wyrobiska, gęstość przepływającego powietrza i naturalna depresja. Z uwagi na występujące trudności w dostępności wyrobisk jak również na znaczne ich długości, praktyka pokazuje, że pomiary nie są realizowane we wszystkich węzłach i wyrobiskach kopalni. Dlatego podjęto próbę opracowania nowej metodyki prowadzącej do uzupełnienia brakujących danych na podstawie innych dostępnych danych dotyczących np. gęstości powietrza, geometrii wyrobisk i kot niwelacyjnych. Z przyjętej metodyki wynika, że w pierwszej kolejności należy wykonać bilans strumieni masy powietrza w strukturze sieci wyrobisk. Następnie zbudować bazę danych ciśnień w węzłach sieci w oparciu o pomiary i uzupełnić brakujące ciśnienia na podstawie dostępnych wyników pomiarów w sąsiednich węzłach oraz ciśnienia obliczonego z wartości oporu aerodynamicznego wyznaczonego na podstawie geometrii wyrobiska i znanego strumienia objętości. W artykule przedstawiono metodykę wyrównywania i bilansowania strumieni objętości powietrza w sieci wyrobisk (rozdz. 2) oraz metodykę wyznaczania ciśnień (rozdz. 3) w węzłach sieci wyrobisk. Opracowane algorytmy obliczeń wprowadzono do systemu programów VentGraph, które zostały sprawdzone poprzez obliczenia dla przykładu wybranego rejonu kopalnianej sieci wentylacyjnej. Wyniki obliczeń przedstawiono w postaci tabelarycznej. W podsumowaniu omówiono wady i zalety przyjętej metodyki.
Źródło:
Archives of Mining Sciences; 2015, 60, 1; 3-24
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of climate change on CO2 and CH4 concentration near closed shaft – numerical simulations
Wpływ zmiany klimatu na rozkład stężeń CO2 i CH4 wokół nieczynnego szybu – symulacje numeryczne
Autorzy:
Wrona, P.
Powiązania:
https://bibliotekanauki.pl/articles/219322.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
emisja gazów cieplarnianych
zmiana klimatu
likwidacja kopalń
nieczynny szyb
lokowanie podziemne gazów
bezpieczeństwo
CFD
greenhouse gas emissions
climate change
mine closure
abandoned shafts
underground gas storage
public safety
Opis:
Given the scientific consensus pointing to climate change, the more extreme weather events associated with this will lead to deeper pressure drops. As has already been stated, pressure drops are the main cause of gas flow from underground sites to the surface. This article presents the results of numerical simulations of the change in distribution of CO2 and CH4 near a closed mining shaft under the predicted baric tendency. Simulations have been undertaken by means of the FDS software package with the Pyrosim graphical interface – a CFD tool for fire and ventilation analysis. Assumptions have been based on previous results of in-situ measurements. The results (determined for a height of 1m above the ground) were compared to the following levels (later in the text comparison levels): for CO2 0.1%vol. according to Pettenkoffer’s scale and 2.5%vol. for CH4 as the half of Lower Explosive Limit (LEL). The results show that the deeper baric drops anticipated could lead to a wider spread of both greenhouse gases in the vicinity of the shaft, especially along the prevailing wind direction. According to the results obtained, CO2 and CH4 with concentrations above their comparison levels are expected at a distance greater than 50m from the shaft when wind is present for CO2 and at a distance of 4.5m for CH4. Subsequent analysis of the results enabled the determination of functions for describing the concentration of gases along the wind direction line under the projected pressure drop. The results relate to a particular case, although the model could easily be modified to any other example of gas emissions from underground sites.
Wraz ze zmianami klimatu należy spodziewać się większej niż obecnie liczby dni w roku, w których będą występować ekstremalne zjawiska pogodowe, związane z przechodzeniem coraz głębszych frontów atmosferycznych (np. Falarz, 1997; Koźmiński i Michalska, 2010). Przyczyni się to do wzrostu tendencji barycznej zniżek ciśnienia. Zniżki baryczne są główną przyczyną emisji gazów kopalnianych na powierzchnię (Wrona et al., 2016b). Gazy te zawierają głównie CO2 i CH4, które są uznawane za gazy cieplarniane oraz mogą stworzyć lokalne zagrożenie dla bezpieczeństwa powszechnego (np. Czaja, 2012). W artykule przedstawiono wyniki symulacji numerycznych dotyczących zmiany stężenia obu gazów emitowanych z nieczynnego szybu górniczego na skutek zwiększającej się zniżkowej tendencji barycznej. Na podstawie analizy literaturowej zagadnienia (np. Falarz, 1997), stwierdzono, że w przyszłości możliwe są ekstremalne zniżki baryczne sięgające lub nawet przekraczające 5 hPa/1h. Na obszarze południowej Polski można spodziewać się raz na dwa lata zniżki sięgającej 4 hPa/1h oraz raz na 10 lat przekraczającej 5 hPa/1h. Takie zdarzenie, spowodowane przez zmiany klimatu, może doprowadzić do intensywniejszego wypływu gazów z obszarów podziemnych, a przez to zasięg ich oddziaływania może być zaskakujący i przede wszystkim niebezpieczny dla okolicznej ludności. Równocześnie do atmosfery zostanie wyemitowana większa ilość gazów cieplarnianych. Natężenie emisji gazów przyjęte podczas symulacji oparto o wyniki pomiarów in-situ nad jednym z nieczynnych szybów na Górnym Śląsku (Wrona et al., 2016b), kiedy to wyznaczono empiryczną zależność (1) pomiędzy wartością tendencji zniżki barycznej, a natężeniem wypływu gazów przez szyb. Założono także stężenia obu gazów jako 5%obj. Wartości te określono jako prawdopodobne na podstawie przeprowadzonych wcześniej pomiarów (Wrona et al., 2016b), oraz na podstawie analizy literaturowej (np. Nawrat, 2002; Szlązak et al., 2002; Krause, 2003). Założono kilka wariantów (zestawów danych wejściowych) symulacji. Dotyczyły one zmiennej wartości tendencji barycznej (TB) oraz wpływu wiatru z jednego kierunku geograficznego (zachodu).Wyznaczone wartości zostały określone na wysokości 1m nad gruntem. Wykazano, że przy bezwietrznej pogodzie, wraz ze wzrostem tendencji barycznej do wartości 5 hPa/1h zasięg obecności CO2 w stężeniu przekraczającym 0.1%obj. (wartość po przekroczeniu której można odnotować efekt duszący, wg skali Pettenkoffera), sięga 45 m. Dla metanu przyjęto poziom porównawczy jako 2.5%obj. stanowiący połowę dolnej granicy wybuchowości tego gazu i stwierdzono, że stężenie wyższe od tej wartości występuje do 4 m od szybu. Przy wietrze 5m/s z zachodu i TB = 1 hPa/1h wartości NDS w linii wiatru (E) są przekroczone do 50 m dla CO2 i 4.2 m dla CH4 (Rys. 6,7). Natomiast przy prognozowanej zniżce 5 hPa/1h wartość NDS dla CO2 w linii jest przekroczona na ponad 50 m od szybu, a dla CH4 na 4.5 m (Rys. 8,9) Prognozę dotyczącą zmiany stężenia na linii zgodnej z dominującym kierunkiem wiatru przedstawiono na rysunkach 10 i 11, podano funkcje aproksymujące i współczynnik determinacji wykonanej prognozy (2) i (3). Wykazano, że przy spodziewanej na skutek zmian klimatu zniżce barycznej sięgającej 5 hPa/1h oba gazy mogą być obecne w odległości ponad 100 m od szybu na wysokości 1m nad gruntem. Uzyskane wyniki wskazują na możliwość występowania w przyszłości poważniejszego niż obecnie zagrożenia gazowego wokół nieczynnych szybów, a także zwiększonej emisji gazów cieplarnianych do atmosfery. Zbudowany model może być łatwo modyfikowany do innych przypadków emisji gazów z górotworu, np. przy rozszczelnieniu instalacji CCS lub UCG, a także przy wszelkich stanach awaryjnych systemów odmetanowania.
Źródło:
Archives of Mining Sciences; 2017, 62, 3; 639-652
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies