Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mel-cepstral coefficients" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Determination of Input Parameters of the Neural Network Model, Intended for Phoneme Recognition of a Voice Signal in the Systems of Distance Learning
Autorzy:
Akhmetov, B.
Tereykovsky, I.
Doszhanova, A.
Tereykovskaya, L.
Powiązania:
https://bibliotekanauki.pl/articles/226378.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
phonemes
recognition of a voice signal
system of distance learning
mel-cepstral coefficients
spectral analysis
Opis:
The article is devoted to the problem of voice signals recognition means introduction in the system of distance learning. The results of the conducted research determine the prospects of neural network means of phoneme recognition. It is also shown that the main difficulties of creation of the neural network model, intended for recognition of phonemes in the system of distance learning, are connected with the uncertain duration of a phoneme-like element. Due to this reason for recognition of phonemes, it is impossible to use the most effective type of neural network model on the basis of a multilayered perceptron, at which the number of input parameters is a fixed value. To mitigate this shortcoming, the procedure, allowing to transform the non-stationary digitized voice signal to the fixed quantity of mel-cepstral coefficients, which are the basis for calculation of input parameters of the neural network model, is developed. In contrast to the known ones, the possibility of linear scaling of phoneme-like elements is available in the procedure. The number of computer experiments confirmed expediency of the fact that the use of the offered coding procedure of input parameters provides the acceptable accuracy of neural network recognition of phonemes under near-natural conditions of the distance learning system. Moreover, the prospects of further research in the field of development of neural network means of phoneme recognition of a voice signal in the system of distance learning is connected with an increase in admissible noise level. Besides, the adaptation of the offered procedure to various natural languages, as well as to other applied tasks, for instance, a problem of biometric authentication in the banking sector, is also of great interest.
Źródło:
International Journal of Electronics and Telecommunications; 2018, 64, 4; 425-432
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Music Performers Classification by Using Multifractal Features : A Case Study
Autorzy:
Reljin, N.
Pokrajac, D.
Powiązania:
https://bibliotekanauki.pl/articles/177266.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
music classification
multifractal analysis
support vector machines
cross-validation
mel-frequency cepstral coefficients
Opis:
In this paper, we investigated the possibility to classify different performers playing the same melodies at the same manner being subjectively quite similar and very difficult to distinguish even for musically skilled persons. For resolving this problem we propose the use of multifractal (MF) analysis, which is proven as an efficient method for describing and quantifying complex natural structures, phenomena or signals. We found experimentally that parameters associated to some characteristic points within the MF spectrum can be used as music descriptors, thus permitting accurate discrimination of music performers. Our approach is tested on the dataset containing the same songs performed by music group ABBA and by actors in the movie Mamma Mia. As a classifier we used the support vector machines and the classification performance was evaluated by using the four-fold cross-validation. The results of proposed method were compared with those obtained using mel-frequency cepstral coefficients (MFCCs) as descriptors. For the considered two-class problem, the overall accuracy and F-measure higher than 98% are obtained with the MF descriptors, which was considerably better than by using the MFCC descriptors when the best results were less than 77%.
Źródło:
Archives of Acoustics; 2017, 42, 2; 223-233
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Time-domain Windowing on Isolated Speech Recognition System Performance
Autorzy:
Ananthakrishna, Thalengala
Anitha, H.
Girisha, T.
Powiązania:
https://bibliotekanauki.pl/articles/2055228.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hidden Markov model
HMM
isolated speech recognition system
ISR
Kannada language
mono-phone model
Mel frequency cepstral coefficients
MFCC
Opis:
Speech recognition system extract the textual data from the speech signal. The research in speech recognition domain is challenging due to the large variabilities involved with the speech signal. Variety of signal processing and machine learning techniques have been explored to achieve better recognition accuracy. Speech is highly non-stationary in nature and therefore analysis is carried out by considering short time-domain window or frame. In the speech recognition task, cepstral (Mel frequency cepstral coefficients (MFCC)) features are commonly used and are extracted for short time-frame. The effectiveness of features depend upon duration of the time-window chosen. The present study is aimed at investigation of optimal time-window duration for extraction of cepstral features in the context of speech recognition task. A speaker independent speech recognition system for the Kannada language has been considered for the analysis. In the current work, speech utterances of Kannada news corpus recorded from different speakers have been used to create speech database. The hidden Markov tool kit (HTK) has been used to implement the speech recognition system. The MFCC along with their first and second derivative coefficients are considered as feature vectors. Pronunciation dictionary required for the study has been built manually for mono-phone system. Experiments have been carried out and results have been analyzed for different time-window lengths. The overlapping Hamming window has been considered in this study. The best average word recognition accuracy of 61.58% has been obtained for a window length of 110 msec duration. This recognition accuracy is comparable with the similar work found in literature. The experiments have shown that best word recognition performance can be achieved by tuning the window length to its optimum value.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 1; 161--166
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hierarchical Classification of Environmental Noise Sources Considering the Acoustic Signature of Vehicle Pass-Bys
Autorzy:
Valero, X.
Alias, F.
Powiązania:
https://bibliotekanauki.pl/articles/176616.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
acoustic signature
environmental noise monitoring
Gaussian mixture models
hierarchical classification
mel-frequency cepstral coefficients (MFCC)
sound classification
traffic noise
vehicle pass-by
Opis:
This work is focused on the automatic recognition of environmental noise sources that affect humans’ health and quality of life, namely industrial, aircraft, railway and road traffic. However, the recognition of the latter, which have the largest influence on citizens’ daily lives, is still an open issue. Therefore, although considering all the aforementioned noise sources, this paper especially focuses on improving the recognition of road noise events by taking advantage of the perceived noise differences along the road vehicle pass-by (which may be divided into different phases: approaching, passing and receding). To that effect, a hierarchical classification scheme that considers these phases independently has been implemented. The proposed classification scheme yields an averaged classification accuracy of 92.5%, which is, in absolute terms, 3% higher than the baseline (a traditional flat classification scheme without hierarchical structure). In particular, it outperforms the baseline in the classification of light and heavy vehicles, yielding a classification accuracy 7% and 4% higher, respectively. Finally, listening tests are performed to compare the system performance with human recognition ability. The results reveal that, although an expert human listener can achieve higher recognition accuracy than the proposed system, the latter outperforms the non-trained listener in 10% in average.
Źródło:
Archives of Acoustics; 2012, 37, 4; 423-434
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies