Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "linear discriminant analysis" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A Low Power and High Performance Hardware Design for Automatic Epilepsy Seizure Detection
Autorzy:
Rafiammal, S. Syed
Najumnissa, D.
Anuradha, G.
Mohideen, S. Kaja
Jawahar, P. K.
Mutalib, Syed Abdul
Powiązania:
https://bibliotekanauki.pl/articles/963923.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
epilepsy detection
system on chip
implementation
Quadrature Linear Discriminant Analysis
hardware design
seizure detection
Opis:
An application specific integrated design using Quadrature Linear Discriminant Analysis is proposed for automatic detection of normal and epilepsy seizure signals from EEG recordings in epilepsy patients. Five statistical parameters are extracted to form the feature vector for training of the classifier. The statistical parameters are Standardised Moment, Co-efficient of Variance, Range, Root Mean Square Value and Energy. The Intellectual Property Core performs the process of filtering, segmentation, extraction of statistical features and classification of epilepsy seizure and normal signals. The design is implemented in Zynq 7000 Zc706 SoC with average accuracy of 99%, Specificity of 100%, F1 score of 0.99, Sensitivity of 98% and Precision of 100 % with error rate of 0.0013/hr., which is approximately zero false detection.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 4; 707-712
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An identification source of variation on the water quality pattern in the Malacca River basin using chemometric approach
Autorzy:
Hua, A. K.
Powiązania:
https://bibliotekanauki.pl/articles/204612.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hierarchical cluster analysis
discriminant analysis
principal component analysis
multiple linear
regression analysis
Opis:
The Malacca River basin experienced river water pollution which caused a major deterioration to the ecosystems and environmental health. This study is carried out to assess the water quality data and identify the pattern of water pollution sources in the study area, and also to develop a predictive performance of water quality in the Malacca River basin. A chemometric approach using a combination of HCA, DA, PCA, and MLR, was applied into twenty water quality variables from nine sampling stations that were collected from January until December of 2015 in the river basin. HCA pointed out three clusters, namely Cluster 1 (C1) with low pollution source, Cluster 2 (C2) with moderate pollution source, and Cluster 3 (C3) with high pollution source. In the DA analysis, the results showed 21 variables, 12 variables, and 9 variables for standard mode, forward stepwise mode, and backward stepwise mode, respectively. Meanwhile, the PCA indicated that the main source of pollutants is detected from residential, industrial, commercial, agricultural, animal livestock, as well as forest land. Among the three models developed from MLR analysis, C3 with a high pollution source is detected to be the most suitable model to be used for the prediction of Water Quality Index in the Malacca River basin. This study proposed for an effective river water quality management by having new water quality monitoring network to be designed for more practical use in order to reduce time and effort, as well as cost saving purposes.
Źródło:
Archives of Environmental Protection; 2018, 44, 4; 111-122
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Statistical Features and Multilayer Neural Network to Automatic Diagnosis of Arrhythmia by ECG Signals
Autorzy:
Slama, A. B.
Lentka, Ł.
Mouelhi, A.
Diouani, M. F.
Sayadi, M.
Smulko, J.
Powiązania:
https://bibliotekanauki.pl/articles/221289.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Multilayer Neural Network
arrhythmia diagnosis
ECG signal processing
Principal Component Analysis
Fisher’s Linear Discriminant
Opis:
Abnormal electrical activity of heart can produce a cardiac arrhythmia. The electrocardiogram (ECG) is a non-invasive technique which is used as a diagnostic tool for cardiac diseases. Non-stationarity and irregularity of heartbeat signal imposes many difficulties to clinicians (e.g., in the case of myocardial infarction arrhythmia). Fortunately, signal processing algorithms can expose hidden information within ECG signal contaminated by additive noise components. This paper explores a method of de-noising ECG signal by the discrete wavelet transform (DWT) and further detecting arrhythmia by estimated statistical parameters. Parameters of the de-noised ECG signals were used to form an input data vector determining whether the examined patient suffers from a cardiac arrhythmia or not. Input data were transformed using selected linear methods in order to reduce dimension of the input vector. A neural network was used to detect illness. Compared with the results of recent studies, the proposed method provides more accurate diagnosis based on the examined ECG signal data.
Źródło:
Metrology and Measurement Systems; 2018, 25, 1; 87-101
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies