Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "line detection" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
An On-Line Method for Thermal Diffusivity Detection of Thin Films Using Infrared Video
Autorzy:
Dong, H.
Zheng, B.
Chen, F.
Powiązania:
https://bibliotekanauki.pl/articles/220732.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
thermal diffusivity
on-line detection
off-centre error
infrared video
thin films
Opis:
A novel method for thermal diffusivity evolution of thin-film materials with pulsed Gaussian beam and infrared video is reported. Compared with common pulse methods performed in specialized labs, the proposed method implements a rapid on-line measurement without producing the off-centre detection error. Through mathematical deduction of the original heat conduction model, it is discovered that the area s, which is encircled by the maximum temperature curve rTMAX(θ), increases linearly over elapsed time. The thermal diffusivity is acquired from the growth rate of the area s. In this study, the off-centre detection error is avoided by performing the distance regularized level set evolution formulation. The area s was extracted from the binary images of temperature variation rate, without inducing errors from determination of the heat source centre. Thermal diffusivities of three materials, 304 stainless steel, titanium, and zirconium have been measured with the established on-line detection system, and the measurement errors are: −2.26%, −1.07%, and 1.61% respectively.
Źródło:
Metrology and Measurement Systems; 2016, 23, 1; 59-70
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new method of line feature generalization based on shape characteristic analysis
Autorzy:
Huang, Z.
Nie, H.
Powiązania:
https://bibliotekanauki.pl/articles/220575.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
line generalization
key point detection
shape characteristic analysis
Opis:
This paper presents a piecewise line generalization algorithm (PG) based on shape characteristic analysis. An adaptive threshold algorithm is used to detect all corners, from which key points are selected. The line is divided into some segments by the key points and generalized piecewise with the Li-Openshaw algorithm. To analyze the performance, line features with different complexity are used. The experimental results compared with the DP algorithm and the Li-Openshaw algorithm show that the PG has better performance in keeping the shape characteristic with higher position accuracy.
Źródło:
Metrology and Measurement Systems; 2011, 18, 4; 597-605
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of line objects by means of Gabor wavelets and Hough transform
Detekcja obiektów liniowych z wykorzystaniem falek Gabora i transformaty Hougha
Autorzy:
Marmol, U.
Borowiec, N.
Powiązania:
https://bibliotekanauki.pl/articles/231250.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
detekcja krawędzi
obiekty liniowe
falki Gabora
transformata Hougha
edge detection
line object
Gabor wavelet
Hough transform
Opis:
Celem pracy jest zaproponowanie metody wykrywania krawędzi o ściśle określonym kierunku przebiegu na danych obrazowych i laserowych. Tradycyjne filtry wykrywają krawędzie we wszystkich kierunkach (np. filtr Canny), ewentualnie w trzech wybranych – horyzontalnym, wertykalnym lub diagonalnym (np. filtr Roberts). Często przedmiotem analiz są tylko określone obiekty liniowe jak linie energetyczne, tory, czy rurociągi. Mają one zazwyczaj ściśle określone kierunki przebiegu. Klasyczne filtry wykrywają oczywiście te informacje, ale także dużą ilość danych nadmiarowych, które utrudniają dalsze analizy. Problemem postawionym w pracy jest znalezienie takiego rozwiązania, które pozwoliłoby na wyznaczenie krawędzi tylko i wyłącznie o ściśle określonym kierunku, odpowiadających za przebieg konkretnych obiektów takich jak tory kolejowe, rurociągi czy linie energetyczne. Problem badawczy skupiał się w pierwszym etapie na określeniu przybliżonej lokalizacji wyłącznie analizowanych obiektów, a w kolejnym kroku na poprawnej i dokładnej ich detekcji. Pierwszy etap został przeprowadzony z wykorzystaniem filtrów Gabora, drugi - z użyciem transformaty Hougha. Testy zostały wykonane zarówno dla danych laserowych jak i danych obrazowych w postaci ortofotomapy. W obydwu przypadkach uzyskano dobre rezultaty dla obydwóch etapów: przybliżonej lokalizacji i precyzyjnej detekcji.
This article presents a method for detecting linear objects with a defined direction based on image and lidar data. It was decided to use Gabor waves for this purpose. The Gabor wavelet is a sinusoid modulated by the Gauss function. The orientation angle of the sinusoid means that the waveform can only operate in strictly defined directions. It should, therefore, provide an appropriate solution to the problem posed by the publication. The research problem focused in the first stage on determining the approximate location of only the analysed objects, and in the next step on correct and accurate detection. The first stage was carried out using Gabor filters, the second - using the Hough transform. The tests were performed for both laser data and image data. In both cases, good results were obtained for both stages: approximate location and precise detection.
Źródło:
Archives of Civil Engineering; 2020, 66, 3; 339-363
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection and classification of short-circuit faults on a transmission line using current signal
Autorzy:
Coban, Melih
Tezcan, Suleyman S.
Powiązania:
https://bibliotekanauki.pl/articles/2086833.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
transmission line
fault detection
fault classification
support vector machine
SVM
linia przesyłowa
wykrywanie uszkodzeń
klasyfikacja błędów
maszyna wektorów nośnych
Opis:
This study offers two Support Vector Machine (SVM) models for fault detection and fault classification, respectively. Different short circuit events were generated using a 154 kV transmission line modeled in MATLAB/Simulink software. Discrete Wavelet Transform (DWT) is performed to the measured single terminal current signals before fault detection stage. Three level wavelet energies obtained for each of three-phase currents were used as input features for the detector. After fault detection, half cycle (10 ms) of three-phase current signals was recorded by 20 kHz sampling rate. The recorded currents signals were used as input parameters for the multi class SVM classifier. The results of the validation tests have demonstrated that a quite reliable, fault detection and classification system can be developed using SVM. Generated faults were used to training and testing of the SVM classifiers. SVM based classification and detection model was fully implemented in MATLAB software. These models were comprehensively tested under different conditions. The effects of the fault impedance, fault inception angle, mother wavelet, and fault location were investigated. Finally, simulation results verify that the offered study can be used for fault detection and classification on the transmission line.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 4; e137630, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies