Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-means ++" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Development of Data-mining Technique for Seismic Vulnerability Assessment
Autorzy:
Wojcik, Waldemar
Karmenova, Markhaba
Smailova, Saule
Tlebaldinova, Aizhan
Belbeubaev, Alisher
Powiązania:
https://bibliotekanauki.pl/articles/1844631.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
data analysis
seismic assessment
clustering
h-means
k-means
random forest
Opis:
Assessment of seismic vulnerability of urban infrastructure is an actual problem, since the damage caused by earthquakes is quite significant. Despite the complexity of such tasks, today’s machine learning methods allow the use of “fast” methods for assessing seismic vulnerability. The article proposes a methodology for assessing the characteristics of typical urban objects that affect their seismic resistance; using classification and clustering methods. For the analysis, we use kmeans and hkmeans clustering methods, where the Euclidean distance is used as a measure of proximity. The optimal number of clusters is determined using the Elbow method. A decision-making model on the seismic resistance of an urban object is presented, also the most important variables that have the greatest impact on the seismic resistance of an urban object are identified. The study shows that the results of clustering coincide with expert estimates, and the characteristic of typical urban objects can be determined as a result of data modeling using clustering algorithms.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 2; 261-266
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Document Clustering : Concepts, Metrics and Algorithms
Autorzy:
Tarczynski, T.
Powiązania:
https://bibliotekanauki.pl/articles/226231.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
document clustering
text mining
k-means
hierarchical clustersting
vector space model
Opis:
Document clustering, which is also refered to as text clustering, is a technique of unsupervised document organisation. Text clustering is used to group documents into subsets that consist of texts that are similar to each orher. These subsets are called clusters. Document clustering algorithms are widely used in web searching engines to produce results relevant to a query. An example of practical use of those techniques are Yahoo! hierarchies of documents [1]. Another application of document clustering is browsing which is defined as searching session without well specific goal. The browsing techniques heavily relies on document clustering. In this article we examine the most important concepts related to document clustering. Besides the algorithms we present comprehensive discussion about representation of documents, calculation of similarity between documents and evaluation of clusters quality.
Źródło:
International Journal of Electronics and Telecommunications; 2011, 57, 3; 271-277
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speaker Model Clustering to Construct Background Models for Speaker Verification
Autorzy:
Dişken, G.
Tüfekci, Z.
Çevik, U.
Powiązania:
https://bibliotekanauki.pl/articles/177299.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Gaussian mixture models
k-means
imposter models
speaker clustering
speaker verification
Opis:
Conventional speaker recognition systems use the Universal Background Model (UBM) as an imposter for all speakers. In this paper, speaker models are clustered to obtain better imposter model representations for speaker verification purpose. First, a UBM is trained, and speaker models are adapted from the UBM. Then, the k-means algorithm with the Euclidean distance measure is applied to the speaker models. The speakers are divided into two, three, four, and five clusters. The resulting cluster centers are used as background models of their respective speakers. Experiments showed that the proposed method consistently produced lower Equal Error Rates (EER) than the conventional UBM approach for 3, 10, and 30 seconds long test utterances, and also for channel mismatch conditions. The proposed method is also compared with the i-vector approach. The three-cluster model achieved the best performance with a 12.4% relative EER reduction in average, compared to the i-vector method. Statistical significance of the results are also given.
Źródło:
Archives of Acoustics; 2017, 42, 1; 127-135
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance of Unsupervised Change Detection Method Based on PSO and K-means Clustering for SAR Images
Autorzy:
Shehab, Jinan N.
Abdulkadhim, Hussein A.
Powiązania:
https://bibliotekanauki.pl/articles/1844494.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
change detection
k-means clustering
multitemporal satellite image
PSO
Gabor wavelet filter
remote sensing
Opis:
This paper presents unsupervised change detection method to produce more accurate change map from imbalanced SAR images for the same land cover. This method is based on PSO algorithm for image segmentation to layers which classify by Gabor Wavelet filter and then K-means clustering to generate new change map. Tests are confirming the effectiveness and efficiency by comparison obtained results with the results of the other methods. Integration of PSO with Gabor filter and k-means will providing more and more accuracy to detect a least changing in objects and terrain of SAR image, as well as reduce the processing time.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 3; 403-408
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lung cancer detection using an integration of fuzzy K-Means clustering and deep learning techniques for CT lung images
Autorzy:
Prasad, J. Maruthi Nagendra
Chakravarty, S.
Krishna, M. Vamsi
Powiązania:
https://bibliotekanauki.pl/articles/2173683.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fuzzy K-means
artificial neural networks
SVM
support vector machine
crow search optimization algorithm
algorytm rozmytych k-średnich
sztuczne sieci neuronowe
maszyna wektorów wspierających
algorytm optymalizacji wyszukiwania kruków
Opis:
Computer aided detection systems are used for the provision of second opinion during lung cancer diagnosis. For early-stage detection and treatment false positive reduction stage also plays a vital role. The main motive of this research is to propose a method for lung cancer segmentation. In recent years, lung cancer detection and segmentation of tumors is considered one of the most important steps in the surgical planning and medication preparations. It is very difficult for the researchers to detect the tumor area from the CT (computed tomography) images. The proposed system segments lungs and classify the images into normal and abnormal and consists of two phases, The first phase will be made up of various stages like pre-processing, feature extraction, feature selection, classification and finally, segmentation of the tumor. Input CT image is sent through the pre-processing phase where noise removal will be taken care of and then texture features are extracted from the pre-processed image, and in the next stage features will be selected by making use of crow search optimization algorithm, later artificial neural network is used for the classification of the normal lung images from abnormal images. Finally, abnormal images will be processed through the fuzzy K-means algorithm for segmenting the tumors separately. In the second phase, SVM classifier is used for the reduction of false positives. The proposed system delivers accuracy of 96%, 100% specificity and sensitivity of 99% and it reduces false positives. Experimental results shows that the system outperforms many other systems in the literature in terms of sensitivity, specificity, and accuracy. There is a great tradeoff between effectiveness and efficiency and the proposed system also saves computation time. The work shows that the proposed system which is formed by the integration of fuzzy K-means clustering and deep learning technique is simple yet powerful and was effective in reducing false positives and segments tumors and perform classification and delivers better performance when compared to other strategies in the literature, and this system is giving accurate decision when compared to human doctor’s decision.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e139006
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies