Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "image recognition" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Automatic calibration system for digital-display vibrometers based on machine vision
Autorzy:
He, W.
Xu, G.
Rong, Z.
Li, G.
Liu, M.
Powiązania:
https://bibliotekanauki.pl/articles/221163.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
image recognition
calibration
vibration measurement
machine vision
automatic testing
digital-display vibrometer
Opis:
Considering the low efficiency during the process of traditional calibration for digital-display vibrometers, an automatic calibration system for vibrometers based on machine vision is developed. First, an automatic vibration control system is established on the basis of a personal computer, and the output of a vibration exciter on which a digital-display vibrometer to be calibrated is installed, is automatically adjusted to vibrate at a preset vibration level and a preset frequency. Then the display of the vibrometer is captured by a digital camera and identified by means of image recognition. According to the vibration level of the exciter measured by a laser interferometer and the recognized display of the vibrometer, the properties of the vibrometer are calculated and output by the computer. Image recognition algorithms for the display of the vibrometer with a high recognition rate are presented, and the recognition for vibrating digits and alternating digits is especially analyzed in detail. Experimental results on the built-up system show that the prposed image recognition methods are very effective and the system could liberate operators from boring and intense calibration work for digital-display vibrometers.
Źródło:
Metrology and Measurement Systems; 2014, 21, 2; 317-328
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Review : Person Identification using Retinal Fundus Images
Autorzy:
Elangovan, Poonguzhali
Nath, Malaya Kumar
Powiązania:
https://bibliotekanauki.pl/articles/227029.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biometric
fundus image
recognition
vascular features
Opis:
In this paper a review on biometric person identification has been discussed using features from retinal fundus image. Retina recognition is claimed to be the best person identification method among the biometric recognition systems as the retina is practically impossible to forge. It is found to be most stable, reliable and most secure among all other biometric systems. Retina inherits the property of uniqueness and stability. The features used in the recognition process are either blood vessel features or non-blood vessel features. But the vascular pattern is the most prominent feature utilized by most of the researchers for retina based person identification. Processes involved in this authentication system include pre-processing, feature extraction and feature matching. Bifurcation and crossover points are widely used features among the blood vessel features. Non-blood vessel features include luminance, contrast, and corner points etc. This paper summarizes and compares the different retina based authentication system. Researchers have used publicly available databases such as DRIVE, STARE, VARIA, RIDB, ARIA, AFIO, DRIDB, and SiMES for testing their methods. Various quantitative measures such as accuracy, recognition rate, false rejection rate, false acceptance rate, and equal error rate are used to evaluate the performance of different algorithms. DRIVE database provides 100 % recognition for most of the methods. Rest of the database the accuracy of recognition is more than 90 %.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 4; 585-596
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Survey on Facial Features Detection
Autorzy:
Naruniec, J.
Powiązania:
https://bibliotekanauki.pl/articles/226792.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
object detection
image processing
face recognition
Opis:
In this article chosen approaches to the facial features detection have been gathered and described. In the conclusion author discusses advantages and disadvantages of the presented algorithms.
Źródło:
International Journal of Electronics and Telecommunications; 2010, 56, 3; 267-272
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Could k-NN classifier be Useful in tree leaves recognition?
Autorzy:
Horaisová, K.
Powiązania:
https://bibliotekanauki.pl/articles/229900.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
binary image
Fourier transform
affine invariance
harmonic analysis
pattern recognition
k-NN classifier
Opis:
This paper presents a method for affine invariant recognition of two-dimensional binary objects based on 2D Fourier power spectrum. Such function is translation invariant and their moments of second order enable construction of affine invariant spectrum except of the rotation effect. Harmonic analysis of samples on circular paths generates Fourier coefficients whose absolute values are affine invariant descriptors. Affine invariancy is approximately saved also for large digital binary images as demonstrated in the experimental part. The proposed method is tested on artificial data set first and consequently on a large set of 2D binary digital images of tree leaves. High dimensionality of feature vectors is reduced via the kernel PCA technique with Gaussian kernel and the k-NN classifier is used for image classification. The results are summarized as k-NN classifier sensitivity after dimensionality reduction. The resulting descriptors after dimensionality reduction are able to distinguish real contours of tree leaves with acceptable classification error. The general methodology is directly applicable to any set of large binary images. All calculations were performed in the MATLAB environment.
Źródło:
Archives of Control Sciences; 2014, 24, 2; 177-192
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies