Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "grid search" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Grid Search of Convolutional Neural Network model in the case of load forecasting
Autorzy:
Tran, Thanh Ngoc
Powiązania:
https://bibliotekanauki.pl/articles/1841362.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
load forecasting
grid search
convolutional neural network
Opis:
The Convolutional Neural Network (CNN) model is one of the most effective models for load forecasting with hyperparameters which can be used not only to determine the CNN structure and but also to train the CNN model. This paper proposes a frame work for Grid Search hyperparameters of the CNN model. In a training process, the optimalmodels will specify conditions that satisfy requirement for minimum of accuracy scoresof Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). In the testing process, these optimal models will be used to evaluate the results along with all other ones. The results indicated that the optimal models have accuracy scores near the minimum values. Load demand data of Queensland (Australia) and Ho Chi Minh City (Vietnam) were utilized to verify the accuracy and reliability of the Grid Search framework.
Źródło:
Archives of Electrical Engineering; 2021, 70, 1; 25-36
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of Obstructive Sleep Apnea from ECG Signal Using SVM Based Grid Search
Autorzy:
Valavan, K. K.
Manoj, S.
Abishek, S.
Gokull Vijay, T. G.
Vojaswwin, P.
Rolant Gini, J.
Ramachandran, K. I.
Powiązania:
https://bibliotekanauki.pl/articles/1844601.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ECG signal
grid search
RR interval
sleep apnea
support vector machine
Opis:
Obstructive Sleep Apnea is one common form of sleep apnea and is now tested by means of a process called Polysomnography which is time-consuming, expensive and also requires a human observer throughout the study of the subject which makes it inconvenient and new detection techniques are now being developed to overcome these difficulties. Heart rate variability has proven to be related to sleep apnea episodes and thus the features from the ECG signal can be used in the detection of sleep apnea. The proposed detection technique uses Support Vector Machines using Grid search algorithm and the classifier is trained using features based on heart rate variability derived from the ECG signal. The developed system is tested using the dataset and the results show that this classification system can recognize the disorder with an accuracy rate of 89%. Further, the use of the grid search algorithm has made this system a reliable and an accurate means for the classification of sleep apnea and can serve as a basis for the future development of its screening.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 1; 5-12
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies