Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "genetic algorithm controller" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Genetic algorithm tuned IP controller for Load Frequency Control of interconnected power systems with HVDC links
Autorzy:
Selvakumaran, S.
Rajasekaran, V.
Karthigaivel, R.
Powiązania:
https://bibliotekanauki.pl/articles/140655.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
genetic algorithm
Load Frequency Control
IP controller
AC-DC tie-lines
interconnected thermal non-reheat power systems
Opis:
A new design of decentralized Load Frequency Controller for interconnected thermal non-reheat power systems with AC-DC parallel tie-lines based on Genetic Algorithm (GA) tuned Integral and Proportional (IP) controller is proposed in this paper. A HVDC link is connected in parallel with an existing AC tie-line to stabilize the frequency oscillations of the AC tie-line system. Any optimum controller selected for load frequency control of interconnected power systems should not only stabilize the power system but also reduce the system frequency and tie line power oscillations and settling time of the output responses. In practice Load Frequency Control (LFC) systems use simple Proportional Integral (PI) or Integral (I) controller. The controller parameters are usually tuned based on classical or trial-and-error approaches. But they are incapable of obtaining good dynamic performance for various load change scenarios in multi-area power system. For this reason, in this paper GA tuned IP controller is used. A two area interconnected thermal non-reheat power system is considered to demonstrate the validity of the proposed controller. The simulation results show that the proposed controller provides better dynamic responses with minimal frequency and tie-line power deviations, quick settling time and guarantees closed-loop stability margin.
Źródło:
Archives of Electrical Engineering; 2014, 63, 2; 161-175
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An adaptive particle swarm optimization algorithm for robust trajectory tracking of a class of under actuated system
Autorzy:
Kumar, V. E.
Jerome, J.
Powiązania:
https://bibliotekanauki.pl/articles/141105.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
inverted pendulum
LQR controller
particle swarm optimization (PSO)
genetic algorithm
adaptive inertia weight factor
state feedback control
Opis:
This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via trial and error method. To address this problem, an intelligent approach employing adaptive PSO (APSO) for optimum tuning of LQR is proposed. In this approach, an adaptive inertia weight factor (AIWF), which adjusts the inertia weight according to the success rate of the particles, is employed to not only speed up the search process but also to increase the accuracy of the algorithm towards obtaining the optimum controller gain. The performance of the proposed approach is tested on a bench mark inverted pendulum system, and the experimental results of APSO are compared with that of the conventional PSO and GA. Experimental results prove that the proposed algorithm remarkably improves the convergence speed and precision of PSO in obtaining the robust trajectory tracking of inverted pendulum.
Źródło:
Archives of Electrical Engineering; 2014, 63, 3; 345-365
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2128163.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137348, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactor
Autorzy:
Pugazhenthi, Nedumal
Selvaperumal, S.
Vijayakumar, K.
Powiązania:
https://bibliotekanauki.pl/articles/2173628.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial bee colony
stirred tank reactor
genetic algorithm
nonlinear PID
controller performance measures
sztuczna kolonia pszczół
reaktor zbiornikowy z mieszadłem
algorytm genetyczny
PID nieliniowy
miernik wydajności kontrolera
Opis:
The artificial bee colony (ABC) algorithm is well known and widely used optimization method based on swarm intelligence, and it is inspired by the behavior of honeybees searching for a high amount of nectar from the flower. However, this algorithm has not been exploited sufficiently. This research paper proposes a novel method to analyze the exploration and exploitation of ABC. In ABC, the scout bee searches for a source of random food for exploitation. Along with random search, the scout bee is guided by a modified genetic algorithm approach to locate a food source with a high nectar value. The proposed algorithm is applied for the design of a nonlinear controller for a continuously stirred tank reactor (CSTR). The statistical analysis of the results confirms that the proposed modified hybrid artificial bee colony (HMABC) achieves consistently better performance than the traditional ABC algorithm. The results are compared with conventional ABC and nonlinear PID (NLPID) to show the superiority of the proposed algorithm. The performance of the HMABC algorithm-based controller is competitive with other state-of-the-art meta-heuristic algorithm-based controllers in the literature.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137348
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies