Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "generalized regression" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Dynamic fire risk prevention strategy in underground coal gasification processes by means of artificial neural networks
Dynamiczna strategia zapobiegania ryzyku pożarowemu z użyciem sztucznych sieci neuronowych w procesach podziemnego zgazowania węgla
Autorzy:
Krzemień, Alicja
Powiązania:
https://bibliotekanauki.pl/articles/218921.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dynamiczna strategia zapobiegania ryzyku
prewencja ryzyka pożarowego
podziemne zgazowanie węgla (PZW)
dynamic alarm strategy
fire risk prevention
Generalized Regression Neural Network
Multi-Layer Feedforward Networks (MLFN)
Multivariate Adaptative Regression Splines (MARS)
underground coal gasification (UCG)
Opis:
Based on data collected during an UCG pilot-scale experiment that took place during 2014 at Wieczorek mine, an active mine located in Upper Silesia (Poland), this research focuses on developing a dynamic fire risk prevention strategy addressing underground coal gasification processes (UCG) within active mines, preventing economic and physical losses derived from fires. To achieve this goal, the forecasting performance of two different kinds of artificial neural network models (generalized regression and multi-layer feedforward) are studied, in order to forecast the syngas temperature at the georeactor outlet with one hour of anticipation, thus giving enough time to UCG operators to adjust the amount and characteristics of the gasifying agents if necessary. The same model could be used to avoid undesired drops in the syngas temperature, as low temperature increases precipitation of contaminants reducing the inner diameter of the return pipeline. As a consequence the whole process of UGC might be stopped. Moreover, it could allow maintaining a high temperature that will lead to an increased efficiency, as UCG is a very exothermic process. Results of this research were compared with the ones obtained by means of Multivariate Adaptative Regression Splines (MARS), a non-parametric regression technique able to model non-linearities that cannot be adequately modelled using other regression methods. Syngas temperature forecast with one hour of anticipation at the georeactor outlet was achieved successfully, and conclusions clearly state that generalized regression neural networks (GRNN) achieve better forecasts than multi-layer feedforward networks (MLFN) and MARS models.
Przedstawione w niniejszej pracy badania koncentrują się na opracowaniu dynamicznej strategii zapobiegania ryzyku pożarowemu w procesach podziemnego zgazowania węgla (PZW) w czynnych kopalniach. Celem badań jest zapobieganie ekonomicznym i fizycznym stratom wynikającym z pożarów. W pracy wykorzystano dane zebrane podczas pilotowego eksperymentu podziemnego zgazowania węgla, który odbył się w 2014 r. w czynnej Kopalni Węgla Kamiennego „Wieczorek”, zlokalizowanej na Górnym Śląsku. W artykule przeanalizowano działanie dwóch różnych modeli sztucznych sieci neuronowych, tj. sieci neuronowych realizujących uogólnione regresje GRNN oraz wielowarstwowych sieci perceptronowych MLFN, w celu prognozowania temperatury gazu syntezowego na wyjściu z georeaktora z godzinnym wyprzedzeniem. Informacja na temat temperatury na godzinę „do przodu” daje wystarczająco dużo czasu operatorowi procesu PZW na dostosowanie ilości i właściwości czynników zgazowujących do zaistniałej sytuacji. Ten sam model można zastosować do uniknięcia niepożądanych spadków temperatury gazu syntezowego. Niska temperatura gazu sprzyja wytrącaniu się osadu (substancji smolistych), powodując zmniejszanie średnicy rurociągu odbioru gazu, co w konsekwencji może prowadzić do całkowitego zatrzymania procesu zgazowania. Model pozwala również na utrzymanie wysokiej temperatury, która prowadzi do zwiększonej wydajności procesu PZW, szczególnie biorąc pod uwagę, że PZW jest procesem bardzo egzotermicznym. Wyniki zrealizowanych badań porównano z rezultatami uzyskanymi za pomocą modelu MARS – nieparametrycznej metody regresji zdolnej do modelowania zależność nieliniowych, których nie można odpowiednio modelować przy użyciu innych metod regresji. Prognoza temperatury gazu na godzinę „do przodu” na wylocie georeaktora została osiągnięta z powodzeniem, a wnioski jasno pokazują, że sieci neuronowe realizujące uogólnione regresje (GRNN – Generalized Regression Neural Networks) osiągają lepsze rezultaty niż wielowarstwowe sieci jednokierunkowe (MLFN – Multi-Layer Feedforward Networks) i modele MARS (Multivariate Adaptative Regression Splines).
Źródło:
Archives of Mining Sciences; 2019, 64, 1; 3-19
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of rockburst potential in kimberlite using fruit fly optimization algorithm and generalized regression neural networks
Ocena stanu zagrożenia tąpania i wyrzutów skał w kimeberlite z wykorzystaniem algorytmu muszki owocowej i sieci neuronowej realizującej uogólnioną regresję (GRNN)
Autorzy:
Pu, Yuanyuan
Apel, Derek B.
Pourrahimian, Yashar
Chen, Jie
Powiązania:
https://bibliotekanauki.pl/articles/219162.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ocena możliwości wystąpienia wyrzutów skał
sieć neuronowa realizująca regresję uogólnioną (GRNN)
algorytm muszki owocowej
sieć neuronowa realizującą propagację wsteczną (BPNN)
rockburst potential evaluation
generalized regression neural networks (GRNN)
fruit fly algorithm
backpropagation neural network (BPNN)
Opis:
Rockburst is a common engineering geological hazard. In order to evaluate rockburst liability in kimberlite at an underground diamond mine, a method combining generalized regression neural networks (GRNN) and fruit fly optimization algorithm (FOA) is employed. Based on two fundamental premises of rockburst occurrence, depth, σθ, σc, σt, B1, B2, SCF, Wet are determined as indicators of rockburst, which are also input vectors of GRNN model. 132 groups of data obtained from rockburst cases from all over the world are chosen as training samples to train the GRNN model; FOA is used to seek the optimal parameter σ that generates the most accurate GRNN model. The trained GRNN model is adopted to evaluate burst liability in kimberlite pipes. The same eight rockburst indicators are acquired from lab tests, mine site and FEM model as test sample features. Evaluation results made by GRNN can be confirmed by a rockburst case at this mine. GRNN do not require any prior knowledge about the nature of the relationship between the input and output variables and avoid analyzing the mechanism of rockburst, which has a bright prospect for engineering rockburst potential evaluation.
Tąpnięcia skał są powszechnym i ogólnie znanym zagrożeniem dla środowiska geologicznego oraz dla budowli. Do oceny skłonności skał do tąpania w podziemnej kopalni diamentów w Kimberlite zastosowano metodę stanowiącą połączenie sieci neuronowych realizujących uogólnioną regresję i algorytm muszki owocowej. W oparciu o dwie podstawowe przesłanki wystąpienia tąpnięcia, głębokość oraz σθ, σc, σt, wielkości B1, B2, SCF, Wet określone zostały jako wskaźniki wystąpienia tąpnięcia i następnie wy-korzystane jako wektory wejściowe w modelu sieci neuronowych GRNN. Zestawiono 132 zbiory danych o przypadkach tapnięć z całego świata i wykorzystano je jako zbiory uczące dla modelu sieci neuronowej realizującej uogólnioną regresję. Algorytm muszki owocowej wykorzystano do znalezienia optymalnej wartości parametru σ który umożliwi wygenerowanie najbardziej dokładnego modelu sieci neuronowej GRNN. Po treningu, model sieci GRNN wykorzystany został do oceny możliwości wystąpienia tąpnięcia w Kimberlite. Te same osiem wskaźników oceny skłonności wyrzutowej skały otrzymano na podstawie badań laboratoryjnych, z analiz prowadzonych w kopalni oraz w oparciu o metodę elementów skończonych, wyniki te wykorzystano następnie jako próbki danych. Wyniki uzyskane przy zastosowaniu sieci neuronowych realizujących regresję uogólnioną potwierdzone zostały przez wyniki uzyskane w trakcie wyrzutu w kopalni. Metoda sieci neuronowych nie wymaga uprzedniej wiedzy o naturze zależności pomiędzy zmiennymi wejściowymi i wyjściowymi i pozwala uniknąć analiz mechanizmu wyrzutu i tąpnięcia, co jest cechą pożądaną z punktu widzenia inżynierów odpowiedzialnych za ocenę skłonności skał do wyrzutu.
Źródło:
Archives of Mining Sciences; 2019, 64, 2; 279-296
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies