Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "gc-ms analysis" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Insecticidal activity and chemical composition of essential oil from Artemisia judaica L. against Callosobruchus maculatus (F.) (coleoptera: bruchidae)
Autorzy:
Abd-Elhady, H.K.
Powiązania:
https://bibliotekanauki.pl/articles/961654.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
essential oil
artemisia judaica
insecticidal activity
callosobruchus maculatus
chemical composition
gas chromatographymass spectrometry (gc/ms) analysis
Opis:
The insecticidal properties of essential oil derived via the hydro-distillation method from aerial parts of Artemisia judaica L. were tested against the cowpea weevil, Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). The repellent activity assay of essential oil against C. maculates adults indicated that in concentrations of 63.7, 31.9, 15.9, 8.0 or 4.0 μg/cm2, the oil reduced egg laying by 92.5, 86.0, 61.8, 42.7 and 12.5%, respectively. Also, the residual-film assay showed that after 72 hours of treatment, concentrations of 50 and 40% were highly effective against the C. maculates adults. The sub-lethal effects of essential oil were investigated on fecundity and F1 progany by exposing adult females to treated seeds. Both LC25 and LC50 of essential oil significantly reduced F1 progany production compared to the control. The chemical composition of the essential oil was analyzed by GC-MS and the resulting oil piperitone (32.4%), camphor (20.6%) and (E)-ethyl cinnnamate (8.2%) were found to contain the major constituents of the oil. This provided the insecticidal properties of the essential oil against cowpea weevil.
Źródło:
Journal of Plant Protection Research; 2012, 52, 3
1427-4345
Pojawia się w:
Journal of Plant Protection Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of the Harmfulness of Moulding Sands with Alkyd Resin Subjected to the High Temperature Influence
Autorzy:
Holtzer, M.
Dańko, R.
Żymankowska-Kumon, S.
Kubecki, M.
Bobrowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/354778.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
moulding sand
binding
BTEX
thermal analysis
GC/MS
Opis:
Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. These resins in their initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin, under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene), and also polycyclic aromatic hydrocarbons (PAHs) can be formed and released. The aim of the study was the development of the method, selection of analytical methods and the determination of optimal conditions of formation compounds from the BTEX and PAHs group. Investigations were carried out in the specially designed set up for the thermal decomposition of organic substances in a temperature range: 500 – 1 300°C at the laboratory scale. The object for testing was alkyd resin applied as a binding material for moulding sands. The qualitative and quantitative analyses of compounds were performed by means of the gas chromatography coupled with the mass spectrometry (GC/MS).
Źródło:
Archives of Metallurgy and Materials; 2016, 61, 4; 2171-2176
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the compounds from the BTEX group, emitted during thermal decomposition of alkyd resin
Autorzy:
Kubecki, M.
Holtzer, M.
Bobrowski, A.
Dańko, R.
Grabowska, B.
Żymankowska-Kumon, S.
Powiązania:
https://bibliotekanauki.pl/articles/380216.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
masa formierska
wiązanie
BTEX
analiza termiczna
GC-MS
moulding sand
binding
thermal analysis
Opis:
Suitability of the given binding agent for the moulding sands preparation depends on the one hand on the estimation of technological properties of the sand and the mould made of it and the obtained casting quality and on the other hand on the assessment of this sand influence on the natural and working environment. Out of moulding sands used in the foundry industry, sands with organic binders deserve a special attention. These binders are based on synthetic resins, which ensure obtaining the proper technological properties and sound castings, however, they negatively influence the environment. If in the initial state these resins are not very dangerous for people and for the environment, thus under an influence of high temperatures they generate very harmful products, being the result of their thermal decomposition. Depending on the kind of the applied resin (phenol-formaldehyde, urea, furfuryl, urea-furfuryl, alkyd) under an influence of a temperature such compounds as: furfuryl alcohol, formaldehyde, phenol, BTEX group (benzene, toluene, ethylbenzene, xylene), and also polycyclic aromatic hydrocarbons (PAH) can be formed and released. The aim of the study was the development of the method, selection of analytical methods and the determination of optimal conditions of formation compounds from the BTEX group. An emission of these components constitutes one of the basic criteria of the harmfulness assessment of binders applied for moulding and core sands. Investigations were carried out in the specially designed set up for the thermal decomposition of organic substances in a temperature range: 5000C - 13000C at the laboratory scale. The object for testing was alkyd resin applied as a binding material for moulding sands. Within investigations the minimal amount of adsorbent necessary for the adsorption of compounds released during the decomposition of the resin sample of a mass app. 15 mg was selected. Also the minimal amount of solvent needed for the desorption of compounds adsorbed in the column with adsorbent was found. The temperature range, in which the maximal amounts of benzene, toluene, ethylobenzene and xylenes are released from the resin, was defined. The qualitative and quantitative analyses of compounds from the BTEX group were performed by means of the gas chromatography combined with the mass spectrometry (GC/MS).
Źródło:
Archives of Foundry Engineering; 2012, 12, 3; 69-74
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
TG/DTG/DTA, FTIR and GC/MS Studies of Oil Sand for Artistic and Precision Foundry with the Emission of Gases Assessment
Autorzy:
Bobrowski, A.
Żymankowska-Kumon, S.
Drożyński, D.
Grabowska, B.
Kaczmarska, K.
Powiązania:
https://bibliotekanauki.pl/articles/382154.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
molding sand
thermal analysis
emission of gases
FTIR
GC/MS
masa formierska
analiza termiczna
emisja gazowa
Opis:
The paper presents the results of thermoanalytical studies by TG/DTG/DTA, FTIR and GC/MS for the oil sand used in art and precision foundry. On the basis of course of DTG and DTA curves the characteristic temperature points for thermal effects accompanying the thermal decomposition reactions were determined. This results were linked with structural changes occurred in sample. It has been shown that the highest weight loss of the sample at temperatures of about 320°C is associated with destruction of C-H bonds (FTIR). In addition, a large volume of gases and high amounts of compounds from the BTEX group are generated when liquid metal interacts with oil sand. The results show, that compared to other molding sands used in foundry, this material is characterized by the highest gaseous emissions and the highest harmfulness, because benzene emissions per kilogram of oil sand are more than 7 times higher than molding sand with furan and phenolic binders and green sand with bentonite and lustrous carbon carrier.
Źródło:
Archives of Foundry Engineering; 2017, 17, 4; 25-30
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies