Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "backpropagation neural network" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
2D Cadastral Coordinate Transformation using extreme learning machine technique
Autorzy:
Ziggah, Y. Y.
Issaka, Y.
Laari, P. B.
Hui, Z.
Powiązania:
https://bibliotekanauki.pl/articles/145372.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
transformacja współrzędnych
sieci neuronowe
dane geodezyjne
sieć radialna
coordinate transformation
extreme learning machine
backpropagation neural network
radial basis function neural network
geodetic datum
Opis:
Land surveyors, photogrammetrists, remote sensing engineers and professionals in the Earth sciences are often faced with the task of transferring coordinates from one geodetic datum into another to serve their desired purpose. The essence is to create compatibility between data related to different geodetic reference frames for geospatial applications. Strictly speaking, conventional techniques of conformal, affine and projective transformation models are mostly used to accomplish such task. With developing countries like Ghana where there is no immediate plans to establish geocentric datum and still rely on the astro-geodetic datums as it national mapping reference surface, there is the urgent need to explore the suitability of other transformation methods. In this study, an effort has been made to explore the proficiency of the Extreme Learning Machine (ELM) as a novel alternative coordinate transformation method. The proposed ELM approach was applied to data found in the Ghana geodetic reference network. The ELM transformation result has been analysed and compared with benchmark methods of backpropagation neural network (BPNN), radial basis function neural network (RBFNN), two-dimensional (2D) affine and 2D conformal. The overall study results indicate that the ELM can produce comparable transformation results to the widely used BPNN and RBFNN, but better than the 2D affine and 2D conformal. The results produced by ELM has demonstrated it as a promising tool for coordinate transformation in Ghana.
Źródło:
Geodesy and Cartography; 2018, 67, 2; 321-343
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of rockburst potential in kimberlite using fruit fly optimization algorithm and generalized regression neural networks
Ocena stanu zagrożenia tąpania i wyrzutów skał w kimeberlite z wykorzystaniem algorytmu muszki owocowej i sieci neuronowej realizującej uogólnioną regresję (GRNN)
Autorzy:
Pu, Yuanyuan
Apel, Derek B.
Pourrahimian, Yashar
Chen, Jie
Powiązania:
https://bibliotekanauki.pl/articles/219162.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ocena możliwości wystąpienia wyrzutów skał
sieć neuronowa realizująca regresję uogólnioną (GRNN)
algorytm muszki owocowej
sieć neuronowa realizującą propagację wsteczną (BPNN)
rockburst potential evaluation
generalized regression neural networks (GRNN)
fruit fly algorithm
backpropagation neural network (BPNN)
Opis:
Rockburst is a common engineering geological hazard. In order to evaluate rockburst liability in kimberlite at an underground diamond mine, a method combining generalized regression neural networks (GRNN) and fruit fly optimization algorithm (FOA) is employed. Based on two fundamental premises of rockburst occurrence, depth, σθ, σc, σt, B1, B2, SCF, Wet are determined as indicators of rockburst, which are also input vectors of GRNN model. 132 groups of data obtained from rockburst cases from all over the world are chosen as training samples to train the GRNN model; FOA is used to seek the optimal parameter σ that generates the most accurate GRNN model. The trained GRNN model is adopted to evaluate burst liability in kimberlite pipes. The same eight rockburst indicators are acquired from lab tests, mine site and FEM model as test sample features. Evaluation results made by GRNN can be confirmed by a rockburst case at this mine. GRNN do not require any prior knowledge about the nature of the relationship between the input and output variables and avoid analyzing the mechanism of rockburst, which has a bright prospect for engineering rockburst potential evaluation.
Tąpnięcia skał są powszechnym i ogólnie znanym zagrożeniem dla środowiska geologicznego oraz dla budowli. Do oceny skłonności skał do tąpania w podziemnej kopalni diamentów w Kimberlite zastosowano metodę stanowiącą połączenie sieci neuronowych realizujących uogólnioną regresję i algorytm muszki owocowej. W oparciu o dwie podstawowe przesłanki wystąpienia tąpnięcia, głębokość oraz σθ, σc, σt, wielkości B1, B2, SCF, Wet określone zostały jako wskaźniki wystąpienia tąpnięcia i następnie wy-korzystane jako wektory wejściowe w modelu sieci neuronowych GRNN. Zestawiono 132 zbiory danych o przypadkach tapnięć z całego świata i wykorzystano je jako zbiory uczące dla modelu sieci neuronowej realizującej uogólnioną regresję. Algorytm muszki owocowej wykorzystano do znalezienia optymalnej wartości parametru σ który umożliwi wygenerowanie najbardziej dokładnego modelu sieci neuronowej GRNN. Po treningu, model sieci GRNN wykorzystany został do oceny możliwości wystąpienia tąpnięcia w Kimberlite. Te same osiem wskaźników oceny skłonności wyrzutowej skały otrzymano na podstawie badań laboratoryjnych, z analiz prowadzonych w kopalni oraz w oparciu o metodę elementów skończonych, wyniki te wykorzystano następnie jako próbki danych. Wyniki uzyskane przy zastosowaniu sieci neuronowych realizujących regresję uogólnioną potwierdzone zostały przez wyniki uzyskane w trakcie wyrzutu w kopalni. Metoda sieci neuronowych nie wymaga uprzedniej wiedzy o naturze zależności pomiędzy zmiennymi wejściowymi i wyjściowymi i pozwala uniknąć analiz mechanizmu wyrzutu i tąpnięcia, co jest cechą pożądaną z punktu widzenia inżynierów odpowiedzialnych za ocenę skłonności skał do wyrzutu.
Źródło:
Archives of Mining Sciences; 2019, 64, 2; 279-296
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies