Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "PSO model" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Traffic fatalities prediction based on support vector machine
Autorzy:
Li, T.
Yang, Y.
Wang, Y.
Chen, C.
Yao, J.
Powiązania:
https://bibliotekanauki.pl/articles/223743.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
traffic accident
support vector machine
SVM
particle swarm optimization (PSO)
PSO
prediction model
optimal parameters
wypadek drogowy
Particle Swarm Optimization
model prognostyczny
optymalne parametry
Opis:
To effectively predict traffic fatalities and promote the friendly development of transportation, a prediction model of traffic fatalities is established based on support vector machine (SVM). As the prediction accuracy of SVM largely depends on the selection of parameters, Particle Swarm Optimization (PSO) is introduced to find the optimal parameters. In this paper, small sample and nonlinear data are used to predict fatalities of traffic accident. Traffic accident statistics data of China from 1981 to 2012 are chosen as experimental data. The input variables for predicting accident are highway mileage, vehicle number and population size while the output variables are traffic fatality. To verify the validity of the proposed prediction method, the back-propagation neural network (BPNN) prediction model and SVM prediction model are also used to predict the traffic fatalities. The results show that compared with BPNN prediction model and SVM model, the prediction model of traffic fatalities based on PSO-SVM has higher prediction precision and smaller errors. The model can be more effective to forecast the traffic fatalities. And the method using particle swarm optimization algorithm for parameter optimization of SVM is feasible and effective. In addition, this method avoids overcomes the problem of “over learning” in neural network training progress.
Źródło:
Archives of Transport; 2016, 39, 3; 21-30
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computationally efficient nonlinear model predictive controller using parallel particle swarm optimization
Autorzy:
Diwan, Supriya P.
Deshpande, Shraddha S.
Powiązania:
https://bibliotekanauki.pl/articles/2173694.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nonlinear model predictive control
particle swarm optimization
PSO
fast dynamic systems
rotary inverted pendulum
divide approach
conquer approach
kontrola predykcyjna modelu nieliniowa
optymalizacja roju cząstek
system dynamiczny szybki
wahadło obrotowe odwrócone
Opis:
As nonlinear optimization techniques are computationally expensive, their usage in the real-time era is constrained. So this is the main challenge for researchers to develop a fast algorithm that is used in real-time computations. This work proposes a fast nonlinear model predictive control approach based on particle swarm optimization for nonlinear optimization with constraints. The suggested algorithm divide and conquer technique improves computing speed and disturbance rejection capability, demonstrating its suitability for real-time applications. The performance of this approach under constraints is validated using a highly nonlinear fast and dynamic real-time inverted pendulum system. The solution presented through work is computationally feasible for smaller sampling times and it gives promising results compared to the state of art PSO algorithm
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 4; art. no. e140696
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies