Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Convolutional Neural Network" wg kryterium: Temat


Wyświetlanie 1-13 z 13
Tytuł:
Grid Search of Convolutional Neural Network model in the case of load forecasting
Autorzy:
Tran, Thanh Ngoc
Powiązania:
https://bibliotekanauki.pl/articles/1841362.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
load forecasting
grid search
convolutional neural network
Opis:
The Convolutional Neural Network (CNN) model is one of the most effective models for load forecasting with hyperparameters which can be used not only to determine the CNN structure and but also to train the CNN model. This paper proposes a frame work for Grid Search hyperparameters of the CNN model. In a training process, the optimalmodels will specify conditions that satisfy requirement for minimum of accuracy scoresof Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). In the testing process, these optimal models will be used to evaluate the results along with all other ones. The results indicated that the optimal models have accuracy scores near the minimum values. Load demand data of Queensland (Australia) and Ho Chi Minh City (Vietnam) were utilized to verify the accuracy and reliability of the Grid Search framework.
Źródło:
Archives of Electrical Engineering; 2021, 70, 1; 25-36
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Skin Lesion Analysis Toward Melanoma Detection Using Deep Learning Techniques
Autorzy:
Sherif, Fatma
Mohamed, Wael A.
Mohra, A.S.
Powiązania:
https://bibliotekanauki.pl/articles/226719.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
melanoma
skin cancer
convolutional neural network
deep learning
Opis:
In the last few years, a great attention was paid to the deep learning Techniques used for image analysis because of their ability to use machine learning techniques to transform input data into high level presentation. For the sake of accurate diagnosis, the medical field has a steadily growing interest in such technology especially in the diagnosis of melanoma. These deep learning networks work through making coarse segmentation, conventional filters and pooling layers. However, this segmentation of the skin lesions results in image of lower resolution than the original skin image. In this paper, we present deep learning based approaches to solve the problems in skin lesion analysis using a dermoscopic image containing skin tumor. The proposed models are trained and evaluated on standard benchmark datasets from the International Skin Imaging Collaboration (ISIC) 2018 Challenge. The proposed method achieves an accuracy of 96.67% for the validation set. The experimental tests carried out on a clinical dataset show that the classification performance using deep learning-based features performs better than the state-of-the-art techniques.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 4; 597-602
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance Analysis of LEACH with Deep Learning in Wireless Sensor Networks
Autorzy:
Prajapati, Hardik K.
Joshi, Rutvij
Powiązania:
https://bibliotekanauki.pl/articles/2200710.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
machine learning
Deep learning
Convolutional Neural Network (CNN)
LEACH
Opis:
Thousands of low-power micro sensors make up Wireless Sensor Networks, and its principal role is to detect and report specified events to a base station. Due to bounded battery power these nodes are having very limited memory and processing capacity. Since battery replacement or recharge in sensor nodes is nearly impossible, power consumption becomes one of the most important design considerations in WSN. So one of the most important requirements in WSN is to increase battery life and network life time. Seeing as data transmission and reception consume the most energy, it’s critical to develop a routing protocol that addresses the WSN’s major problem. When it comes to sending aggregated data to the sink, hierarchical routing is critical. This research concentrates on a cluster head election system that rotates the cluster head role among nodes with greater energy levels than the others.We used a combination of LEACH and deep learning to extend the network life of the WSN in this study. In this proposed method, cluster head selection has been performed by Convolutional Neural Network (CNN). The comparison has been done between the proposed solution and LEACH, which shows the proposed solution increases the network lifetime and throughput.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 4; 799--805
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep networks for image super-resolution using hierarchical features
Autorzy:
Yang, Xin
Zhang, Yifan
Zhou, Dake
Powiązania:
https://bibliotekanauki.pl/articles/2173634.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
super-resolution
convolutional neural network
sub-pixel convolutional neural network
densely connected neural networks
super rozdzielczość
splotowa sieć neuronowa
subpikselowa splotowa sieć neuronowa
gęsto połączone sieci neuronowe
Opis:
To better extract feature maps from low-resolution (LR) images and recover high-frequency information in the high-resolution (HR) images in image super-resolution (SR), we propose in this paper a new SR algorithm based on a deep convolutional neural network (CNN). The network structure is composed of the feature extraction part and the reconstruction part. The extraction network extracts the feature maps of LR images and uses the sub-pixel convolutional neural network as the up-sampling operator. Skip connection, densely connected neural networks and feature map fusion are used to extract information from hierarchical feature maps at the end of the network, which can effectively reduce the dimension of the feature maps. In the reconstruction network, we add a 3×3 convolution layer based on the original sub-pixel convolution layer, which can allow the reconstruction network to have better nonlinear mapping ability. The experiments show that the algorithm results in a significant improvement in PSNR, SSIM, and human visual effects as compared with some state-of-the-art algorithms based on deep learning.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; art. no. e139616
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A two-step fall detection algorithm combining threshold-based method and convolutional neural network
Autorzy:
Xu, Tao
Se, Haifeng
Liu, Jiahui
Powiązania:
https://bibliotekanauki.pl/articles/1848958.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wearable
fall detection
MPU6050
threshold-based method
convolutional neural network
Opis:
Falls are one of the leading causes of disability and premature death among the elderly. Technical solutions designed to automatically detect a fall event may mitigate fall-related health consequences by immediate medical assistance. This paper presents a wearable device called TTXFD based on MPU6050 which can collect triaxial acceleration signals. We have also designed a two-step fall detection algorithm that fuses threshold-based method (TBM) and machine learning (ML). The TTXFD exploits the TBM stage with low computational complexity to pick out and transmit suspected fall data (triaxial acceleration data). The ML stage of the two-step algorithm is implemented on a server which encodes the data into an image and exploits a fall detection algorithm based on convolutional neural network to identify a fall on the basis of the image. The experimental results show that the proposed algorithm achieves high sensitivity (97.83%), specificity (96.64%) and accuracy (97.02%) on the open dataset. In conclusion, this paper proposes a reliable solution for fall detection, which combines the advantages of threshold-based method and machine learning technology to reduce power consumption and improve classification ability.
Źródło:
Metrology and Measurement Systems; 2021, 28, 1; 23-40
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A High-Accuracy of Transmission Line Faults (TLFs) Classification Based on Convolutional Neural Network
Autorzy:
Fuada, S.
Shiddieqy, H. A.
Adiono, T.
Powiązania:
https://bibliotekanauki.pl/articles/1844462.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fault detection
fault classification
transmission lines
convolutional neural network
machine learning
Opis:
To improve power system reliability, a protection mechanism is highly needed. Early detection can be used to prevent failures in the power transmission line (TL). A classification system method is widely used to protect against false detection as well as assist the decision analysis. Each TL signal has a continuous pattern in which it can be detected and classified by the conventional methods, i.e., wavelet feature extraction and artificial neural network (ANN). However, the accuracy resulting from these mentioned models is relatively low. To overcome this issue, we propose a machine learning-based on Convolutional Neural Network (CNN) for the transmission line faults (TLFs) application. CNN is more suitable for pattern recognition compared to conventional ANN and ANN with Discrete Wavelet Transform (DWT) feature extraction. In this work, we first simulate our proposed model by using Simulink® and Matlab®. This simulation generates a fault signal dataset, which is divided into 45.738 data training and 4.752 data tests. Later, we design the number of machine learning classifiers. Each model classifier is trained by exposing it to the same dataset. The CNN design, with raw input, is determined as an optimal output model from the training process with 100% accuracy.
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 4; 655-664
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An intelligent compound gear-bearing fault identification approach using Bessel kernel-based time-frequency distribution
Autorzy:
Andrews, Athisayam
Manisekar, Kondal
Powiązania:
https://bibliotekanauki.pl/articles/2203369.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
compound gear-bearing faults
Bessel transform
time-frequency distribution
convolutional neural network
Opis:
The most crucial transmission components utilized in rotating machinery are gears and bearings. In a gearbox, the bearings support the force acting on the gears. Compound Faults in both the gears and bearings may cause heavy vibration and lead to early failure of components. Despite their importance, these compound faults are rarely studied since the vibration signals of the compound fault system are strongly dominated by noise. This work proposes an intelligent approach to fault identification of a compound gear-bearing system using a novel Bessel kernel-based Time-Frequency Distribution (TFD) called the Bessel transform. The Time-frequency images extracted using the Bessel transform are used as an input to the Convolutional Neural Network (CNN), which classifies the faults. The effectiveness of the proposed approach is validated with a case study, and a testing efficiency of 94% is achieved. Further, the proposed method is compared with the other TFDs and found to be effective.
Źródło:
Metrology and Measurement Systems; 2023, 30, 1; 83--97
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Theory I: Deep networks and the curse of dimensionality
Autorzy:
Poggio, T.
Liao, Q.
Powiązania:
https://bibliotekanauki.pl/articles/200623.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep network
shallow network
convolutional neural network
function approximation
deep learning
sieci neuronowe
aproksymacja funkcji
uczenie głębokie
Opis:
We review recent work characterizing the classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 761-773
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A few-shot fine-grained image recognition method
Autorzy:
Wang, Jianwei
Chen, Deyun
Powiązania:
https://bibliotekanauki.pl/articles/2204540.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
few-shot learning
attention metric
CNN
convolutional neural network
feature expression
wskaźnik uwagi
sieć neuronowa splotowa
cechy wyrażeń
Opis:
Deep learning methods benefit from data sets with comprehensive coverage (e.g., ImageNet, COCO, etc.), which can be regarded as a description of the distribution of real-world data. The models trained on these datasets are considered to be able to extract general features and migrate to a domain not seen in downstream. However, in the open scene, the labeled data of the target data set are often insufficient. The depth models trained under a small amount of sample data have poor generalization ability. The identification of new categories or categories with a very small amount of sample data is still a challenging task. This paper proposes a few-shot fine-grained image recognition method. Feature maps are extracted by a CNN module with an embedded attention network to emphasize the discriminative features. A channel-based feature expression is applied to the base class and novel class followed by an improved cosine similarity-based measurement method to get the similarity score to realize the classification. Experiments are performed on main few-shot benchmark datasets to verify the efficiency and generality of our model, such as Stanford Dogs, CUB-200, and so on. The experimental results show that our method has more advanced performance on fine-grained datasets.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 1; art. no. e144584
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection and Localization of Audio Event for Home Surveillance Using CRNN
Autorzy:
Suruthhi, V. S.
Smita, V.
Rolant Gini, J.
Ramachandran, K. I.
Powiązania:
https://bibliotekanauki.pl/articles/2055274.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolutional recurrent neural network
CRNN
gated recurrent unit
GRU
long short-term memory
LSTM
sound event localization and detection
SELD
Opis:
Safety and security have been a prime priority in people’s lives, and having a surveillance system at home keeps people and their property more secured. In this paper, an audio surveillance system has been proposed that does both the detection and localization of the audio or sound events. The combined task of detecting and localizing the audio events is known as Sound Event Localization and Detection (SELD). The SELD in this work is executed through Convolutional Recurrent Neural Network (CRNN) architecture. CRNN is a stacked layer of convolutional neural network (CNN), recurrent neural network (RNN) and fully connected neural network (FNN). The CRNN takes multichannel audio as input, extracts features and does the detection and localization of the input audio events in parallel. The SELD results obtained by CRNN with the gated recurrent unit (GRU) and with long short-term memory (LSTM) unit are compared and discussed in this paper. The SELD results of CRNN with LSTM unit gives 75% F1 score and 82.8% frame recall for one overlapping sound. Therefore, the proposed audio surveillance system that uses LSTM unit produces better detection and overall performance for one overlapping sound.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 4; 735--741
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new method of cardiac sympathetic index estimation using a 1D-convolutional neural network
Autorzy:
Kołodziej, Marcin
Majkowski, Andrzej
Tarnowski, Paweł
Rak, Remigiusz Jan
Rysz, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2090741.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
epilepsy
seizure detection
seizure prediction
convolutional neural network
deep learning
ECG
HRV
cardiac sympathetic index
padaczka
wykrywanie napadu
przewidywanie napadu
splotowa sieć neuronowa
głęboka nauka
technika deep learning
EKG
wskaźnik współczulny serca
Opis:
Epilepsy is a neurological disorder that causes seizures of many different types. The article presents an analysis of heart rate variability (HRV) for epileptic seizure prediction. Considering that HRV is nonstationary, our research focused on the quantitative analysis of a Poincare plot feature, i.e. cardiac sympathetic index (CSI). It is reported that the CSI value increases before the epileptic seizure. An algorithm using a 1D-convolutional neural network (1D-CNN) was proposed for CSI estimation. The usability of this method was checked for 40 epilepsy patients. Our algorithm was compared with the method proposed by Toichi et al. The mean squared error (MSE) for testing data was 0.046 and the mean absolute percentage error (MAPE) amounted to 0.097. The 1D-CNN algorithm was also compared with regression methods. For this purpose, a classical type of neural network (MLP), as well as linear regression and SVM regression, were tested. In the study, typical artifacts occurring in ECG signals before and during an epileptic seizure were simulated. The proposed 1D-CNN algorithm estimates CSI well and is resistant to noise and artifacts in the ECG signal.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e136921, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new method of cardiac sympathetic index estimation using a 1D-convolutional neural network
Autorzy:
Kołodziej, Marcin
Majkowski, Andrzej
Tarnowski, Paweł
Rak, Remigiusz Jan
Rysz, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/2173565.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
epilepsy
seizure detection
seizure prediction
convolutional neural network
deep learning
ECG
HRV
cardiac sympathetic index
padaczka
wykrywanie napadu
przewidywanie napadu
splotowa sieć neuronowa
głęboka nauka
technika deep learning
EKG
wskaźnik współczulny serca
Opis:
Epilepsy is a neurological disorder that causes seizures of many different types. The article presents an analysis of heart rate variability (HRV) for epileptic seizure prediction. Considering that HRV is nonstationary, our research focused on the quantitative analysis of a Poincare plot feature, i.e. cardiac sympathetic index (CSI). It is reported that the CSI value increases before the epileptic seizure. An algorithm using a 1D-convolutional neural network (1D-CNN) was proposed for CSI estimation. The usability of this method was checked for 40 epilepsy patients. Our algorithm was compared with the method proposed by Toichi et al. The mean squared error (MSE) for testing data was 0.046 and the mean absolute percentage error (MAPE) amounted to 0.097. The 1D-CNN algorithm was also compared with regression methods. For this purpose, a classical type of neural network (MLP), as well as linear regression and SVM regression, were tested. In the study, typical artifacts occurring in ECG signals before and during an epileptic seizure were simulated. The proposed 1D-CNN algorithm estimates CSI well and is resistant to noise and artifacts in the ECG signal.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e136921
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep Learning Can Improve Early Skin Cancer Detection
Autorzy:
Mohamed, Abeer
Mohamed, Wael A.
Zekry, Abdel Halim
Powiązania:
https://bibliotekanauki.pl/articles/963798.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
technology
dermoscopic lesions
convolutional
neural network
ISIC dataset
deep learning
neural networks
Opis:
Skin cancer is the most common form of cancer affecting humans. Melanoma is the most dangerous type of skin cancer; and early diagnosis is extremely vital in curing the disease. So far, the human knowledge in this field is very limited, thus, developing a mechanism capable of identifying the disease early on can save lives, reduce intervention and cut unnecessary costs. In this paper, the researchers developed a new learning technique to classify skin lesions, with the purpose of observing and identifying the presence of melanoma. This new technique is based on a convolutional neural network solution with multiple configurations; where the researchers employed an International Skin Imaging Collaboration (ISIC) dataset. Optimal results are achieved through a convolutional neural network composed of 14 layers. This proposed system can successfully and reliably predict the correct classification of dermoscopic lesions with 97.78% accuracy.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 3; 507-512
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-13 z 13

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies