Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Central composite design" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Application of the central composite design to optimization of petroleum hydrocarbons removal from oilfield water using advanced oxidation process
Autorzy:
Farzadkia, M.
Ghorbanian, M.
Biglari, H.
Gholami, M.
Mehrizi, E. A.
Powiązania:
https://bibliotekanauki.pl/articles/204881.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
advanced oxidation processes
optimizing
total oil hydrocarbons
central composite design
Opis:
In the last few years, RSM method has been used widely to analyze, optimize and evaluate the interaction of independent factors for chemical, biochemical, and environmental processes. This study examined and evaluated the applicability of this method to manage Oilfield Produced Water to prevent marine environment due to the presence of hard degradable compounds by ozonation process. In this study simulated oil-water sample and a homogenizer reactor was used. The main reactor used in this study was impeinger equipped with sintered glass filter through which the treated oil-water was entered to reactor in the form of discontinuous flow. After ozonation and at the end of the reaction time (60 min), the concentration of oil hydrocarbons was determined by a gas chromatography device equipped with a flame ionization detector. The performance of the central composite design (CCD) approach was evaluated by the F-Value, P-Value, R2, lack of fit test and Adequate Precision parameters to determine the influence of effective factors, including ozonation time, pH, ozone dose, and TPH concentration on the TPH removal efficiency. The mean TPH efficiency obtained from the design of the 30-step experiment resulting from surface-response method was 49.903%, with a standard deviation of 12.47. This study showed the high power of model adopted from the central composite design to predict the hydrocarbons removal from oilfield water using advanced oxidation process, and it was proved that this model can be used alone to determine the design space nature.
Źródło:
Archives of Environmental Protection; 2018, 44, 4; 22-30
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Factors Influencing Dry Sliding Wear Behaviour of Laser Remelted Plasma Sprayed Mo Coating Using Response Surface Methodology
Autorzy:
Manjunatha, S. S.
Manjaiah, M.
Basavarajappa, S.
Powiązania:
https://bibliotekanauki.pl/articles/356714.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
laser remelting
plasma spray
central composite design (CCD)
response surface methodology (RSM)
Mo coating
Opis:
Plasma spraying is a process widely used to fabricate wear resistant coatings. However, various problems are associated with plasma spraying out of which poor bonding strength between the coating and the substrate and the high porosity in the as sprayed coatings are of major concern. In order to eliminate these problems and enhance wear performance, the laser remelting process has been used. The laser remelting of plasma sprayed Mo coatings alters the wear mechanism and improves the wear resistance. The wear mechanism and wear volume loss depend on the applied load, sliding speed and sliding distance. Hence, an effort has been made to investigate the effect of process parameters on volume loss using Response Surface Methodology (RSM) based mathematical models. The experiments were planned as per Central Composite Design (CCD). The investigations revealed that the applied load was the most dominant factor affecting the volume loss of the coating. The sliding speed, sliding distance and interaction effects were considered as the next important parameters influencing the volume loss. The investigation also reveals that, the wear volume loss depends on two wear mechanisms, one being the formations of grooves along surface tribo films and other being fracture of splats with delamination of the coating.
Źródło:
Archives of Metallurgy and Materials; 2018, 63, 1; 217-225
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of Injection Moulding Process via Design of Experiment (DOE) Method based on Rice Husk (RH) Reinforced Low Density Polyethylene (LDPE) Composite Properties
Autorzy:
Jaya, Haliza
Zulkepli, Nik Noriman
Omar, Mohd Firdaus
Abd Rahim, Shayfull Zamree
Nabiałek, Marcin
Jeż, Kinga
Al Bakri Abdullah, Mohd Mustafa
Powiązania:
https://bibliotekanauki.pl/articles/2106601.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
injection moulding
design of experiments
DOE
central composite design
response surface methodology
RSM
shrinkage
tensile strength
Opis:
Optimal parameters setting of injection moulding (IM) machine critically effects productivity, quality, and cost production of end products in manufacturing industries. Previously, trial and error method were the most common method for the production engineers to meet the optimal process injection moulding parameter setting. Inappropriate injection moulding machine parameter settings can lead to poor production and quality of a product. Therefore, this study was purposefully carried out to overcome those uncertainty. This paper presents a statistical technique on the optimization of injection moulding process parameters through central composite design (CCD). In this study, an understanding of the injection moulding process and consequently its optimization is carried out by CCD based on three parameters (melt temperature, packing pressure, and cooling time) which influence the shrinkage and tensile strength of rice husk (RH) reinforced low density polyethylene (LDPE) composites. Statistical results and analysis are used to provide better interpretation of the experiment. The models are form from analysis of variance (ANOVA) method and the model passed the tests for normality and independence assumptions.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 2; 719--727
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adsorption of lead ions onto chemically activated carbon from waste tire char and optimization of the process using response surface methodology
Autorzy:
Rutto, Hilary
Seidigeng, Tumisang
Malise, Lucky
Powiązania:
https://bibliotekanauki.pl/articles/204781.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
waste tire pyrolysis char
chemical activation
central composite design
CCD
adsorption capacity
numerical optimization
Opis:
Tires play an important role in the automobile industry. However, their disposal when worn out has adverse effects on the environment. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH onto pyrolytic char. Adsorption studies on lead onto chemically activated carbon were carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/100 ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found out that the adsorption capacity increased with an increase in adsorbent dosage, contact time, pH, and decreased with an increase in lead concentration and temperature. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, X-ray Diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope were used to characterize the pyrolytic carbon char before and after activation. The numerical optimization analysis results showed that the maximum adsorption capacity of 93.176 mg/g was obtained at adsorbent dosage of 0.97 g/100 ml, pH 7, contact time of 115.27 min, initial metal concentration of 100 mg/and temperature of 25°C. FTIR and TGA analysis showed the presence of oxygen containing functional groups on the surface of the activated carbon produced and that the weight loss during the activation step was negligible.
Źródło:
Archives of Environmental Protection; 2019, 45, 4; 92-103
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies