Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Alexnet" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
An enhanced performance evaluation of workflow computing and scheduling using hybrid classification approach in the cloud environment
Autorzy:
Tharani, P.
Kalpana, A. M.
Powiązania:
https://bibliotekanauki.pl/articles/2086824.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
cloud
workflow scheduling
machine learning
CNN
AlexNet
chmura
planowanie przepływu pracy
nauczanie maszynowe
Opis:
Workflow scheduling is the major problem in cloud computing consists of a set of interdependent tasks which is used to solve the various scientific and healthcare issues. In this research work, the cloud based workflow scheduling between different tasks in medical imaging datasets using Machine Learning (ML) and Deep Learning (DL) methods (hybrid classification approach) is proposed for healthcare applications. The main objective of this research work is to develop a system which is used for both workflow computing and scheduling in order to minimize the makespan, execution cost and to segment the cancer region in the classified abnormal images. The workflow computing is performed using different Machine Learning classifiers and the workflow scheduling is carried out using Deep Learning algorithm. The conventional AlexNet Convolutional Neural Networks (CNN) architecture is modified and used for workflow scheduling between different tasks in order to improve the accuracy level. The AlexNet architecture is analyzed and tested on different cloud services Amazon Elastic Compute Cloud- EC2 and Amazon Lightsail with respect to Makespan (MS) and Execution Cost (EC).
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 4; e137728, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of driver fatigue symptoms using transfer learning
Autorzy:
Jakubowski, J.
Chmielińska, J.
Powiązania:
https://bibliotekanauki.pl/articles/201238.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
driver fatigue
convolutional neural networks
transfer learning
AlexNet
zmęczenie kierowcy
splotowe sieci neuronowe
Opis:
This paper presents the results of the scientific investigations which aimed at developing the detectors of the selected driver fatigue symptoms based on face images. The presented approach assumed using convolutional neural networks and transfer learning technique. In the conducted research the pretrained model of AlexNet was used. The net underwent slight modification of the structure and then the fine-tuning procedure was applied with the use of an appropriate dataset. In this way all detectors of the selected fatigue symptoms were created. The results of conducted computations indicate that it is potentially possible to apply such an approach to the problem of fatigue symptom detection. The values of the overall misclassification rates for the most troublesome symptom are less than 5.5%, which seems to be a quite satisfactory result.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 869-874
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies