Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wei, C.-H." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Non-parametric machine learning methods for evaluating the effects of traffic accident duration on freeways
Autorzy:
Lee, Y.
Wei, C.-H.
Chao, K.-C.
Powiązania:
https://bibliotekanauki.pl/articles/223569.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
accident on freeway
accident duration
effect evaluating
correlation
artificial neural networks
k-nearest neighbour method
wypadek na autostradzie
czas trwania wypadku
ocena skutków
korelacja
sztuczne sieci neuronowe
metoda najbliższego sąsiada
Opis:
Traffic accidents usually cause congestion and increase travel-times. The cost of extra travel time and fuel consumption due to congestion is huge. Traffic operators and drivers expect an accurately forecasted accident duration to reduce uncertainty and to enable the implementation of appropriate strategies. This study demonstrates two non-parametric machine learning methods, namely the k-nearest neighbour method and artificial neural network method, to construct accident duration prediction models. The factors influencing the occurrence of accidents are numerous and complex. To capture this phenomenon and improve the performance of accident duration prediction, the models incorporated various data including accident characteristics, traffic data, illumination, weather conditions, and road geometry characteristics. All raw data are collected from two public agencies and were integrated and cross-checked. Before model development, a correlation analysis was performed to reduce the scale of interrelated features or variables. Based on the performance comparison results, an artificial neural network model can provide good and reasonable prediction for accident duration with mean absolute percentage error values less than 30%, which are better than the prediction results of a k-nearest neighbour model. Based on comparison results for circumstances, the Model which incorporated significant variables and employed the ANN method can provide a more accurate prediction of accident duration when the circumstances involved the day time or drunk driving than those that involved night time and did not involve drunk driving. Empirical evaluation results reveal that significant variables possess a major influence on accident duration prediction.
Źródło:
Archives of Transport; 2017, 43, 3; 91-104
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of luteinizing hormone regulation of maturation and apoptosis, expression of LHR and FSHR in cumulus-oocyte complexes in Lanzhou fat-tailed sheep
Autorzy:
Wei, S.C.
Deng, Y.Y.
Lai, L.J.
Liang, H.Q.
Lin, G.Z.
Gong, Z.D.
Powiązania:
https://bibliotekanauki.pl/articles/2087862.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
In vitro maturation
apoptosis
luteinizing hormone
cumulus oocyte complexes
Caspase-3
receptor
Źródło:
Polish Journal of Veterinary Sciences; 2017, 4; 759-768
1505-1773
Pojawia się w:
Polish Journal of Veterinary Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies