Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sugandhi, Rekha" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Multi-model hybrid ensemble weighted adaptive approach with decision level fusion for personalized affect recognition based on visual cues
Autorzy:
Jadhav, Nagesh
Sugandhi, Rekha
Powiązania:
https://bibliotekanauki.pl/articles/2086876.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep learning
convolution neural network
emotion recognition
transfer learning
late fusion
uczenie głębokie
konwolucyjna sieć neuronowa
rozpoznawanie emocji
Opis:
In the domain of affective computing different emotional expressions play an important role. To convey the emotional state of human emotions, facial expressions or visual cues are used as an important and primary cue. The facial expressions convey humans affective state more convincingly than any other cues. With the advancement in the deep learning techniques, the convolutional neural network (CNN) can be used to automatically extract the features from the visual cues; however variable sized and biased datasets are a vital challenge to be dealt with as far as implementation of deep models is concerned. Also, the dataset used for training the model plays a significant role in the retrieved results. In this paper, we have proposed a multi-model hybrid ensemble weighted adaptive approach with decision level fusion for personalized affect recognition based on the visual cues. We have used a CNN and pre-trained ResNet-50 model for the transfer learning. VGGFace model’s weights are used to initialize weights of ResNet50 for fine-tuning the model. The proposed system shows significant improvement in test accuracy in affective state recognition compared to the singleton CNN model developed from scratch or transfer learned model. The proposed methodology is validated on The Karolinska Directed Emotional Faces (KDEF) dataset with 77.85% accuracy. The obtained results are promising compared to the existing state of the art methods.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 6; e138819, 1--11
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies