Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Matuszewski, Paweł." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Czy można wierzyć sondażom przedwyborczym? Wykorzystanie podejścia bayesowskiego do analizy rozbieżności między wynikami wyborów parlamentarnych w Polsce a danymi z badań sondażowych
Can Pre-Election Polls Be Believed? Use of a Bayesian Approach to Analyse the Disparity Between Parliamentary Election Results in Poland and Survey Data
Autorzy:
Matuszewski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/427703.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sondaże przedwyborcze
prognozy polityczne
Bayes
MCMC
political forecasts
pre-election polls accuracy
election polling
Opis:
Celem artykułu jest określenie tego, jak dobrze sondaże przedwyborcze potrafią przewidywać wyniki wyborów parlamentarnych oraz od czego zależy trafność tych prognoz. Zmiennymi wyjaśnianymi jest poprawne wskazanie zwycięskiego komitetu oraz wyniku wyborczego poszczególnych opcji politycznych biorących udział w wyborach. Pierwszą zmienną wyjaśniającą jest czas między badaniem a datą wyborów. Drugą zmienną wyjaśniającą jest różnica wskazań między dwoma komitetami o największym poparciu. Dane empiryczne obejmują wyniki sondaży w okresie 12 miesięcy przed wyborami parlamentarnymi w Polsce od 1993 do 2015 roku. W analizie wykorzystano bayesowski model hierarchiczny i symulację Monte Carlo. Częściowo potwierdziły się hipotezy, które wskazywały, że zdolność sondaży do przewidywania największego poparcia i do wskazania wyników wyborczych poszczególnych komitetów jest tym większa, im bliżej do wyborów. W pełni potwierdziła się hipoteza, że sondaże tym lepiej wskazują zwycięski komitet, im większa jest różnica między sondażowym poparciem dwóch głównych oponentów.
The aim of this article is to determine how well pre-election polls can predict the results of parliamentary elections, and what determines the accuracy of these predictions. The dependent variables are 1) the correct indication of the winning party and 2) the accuracy of election surveys in forecasting voters’ support. The first independent variable is the time between the poll and the date of the election. The second explanatory variable is the difference in results between the two parties with the greatest support. This study uses data from all publicly available polls that took place in the 12 months before every parliamentary election in Poland from 1993 to 2015. The analysis uses Bayesian hierarchical modeling and Markov Chain Monte Carlo simulation. The results show that the average probability that a pre-election poll will correctly predict the winning party is around 80%, whereas the probability that it will correctly predict the distribution of voters’ support (with 3% error margin) is around 50%. The evidence partially proved that the forecasting accuracy of an election poll is the better the closer the poll is taken to the date of the election. It was also proved that the ability of a poll to predict the winner is better the greater the gap between the survey results of the two leading parties.
Źródło:
Studia Socjologiczne; 2016, 4(223); 253-276
0039-3371
Pojawia się w:
Studia Socjologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
„Śmieci na wejściu, śmieci na wyjściu”. Wpływ jakości koderów na działanie sieci neuronowej klasyfikującej wypowiedzi w mediach społecznościowych
„Garbage in, Garbage out”. The Impact of Coders’ Quality on the Neural Network Classifying Text on Social Media
Autorzy:
Matuszewski, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2131910.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sieci neuronowe
klasyfikacja danych tekstowych
modele nadzorowane
opinion mining
jakość koderów
text classification
neural networks
supervised models
quality of coders
Opis:
Jedna z głównych decyzji przy ręcznym kodowaniu danych tekstowych dotyczy tego, czy kodowanie ma być weryfikowane. W przypadku modeli nadzorowanych prowadzi to do istotnego dylematu: czy lepszym rozwiązaniem jest dostarczenie modelowi dużej liczby przypadków, na których będzie się uczyć kosztem weryfikacji poprawności danych, czy też zakodowanie każdego przypadku n-razy, co pozwoli porównać kody i sprawdzić ich poprawność, ale jednocześnie n-krotnie zmniejszy zbiór danych treningowych. Taka decyzja może zaważyć nie tylko na ostatecznych wynikach klasyfikatora. Z punktu widzenia badaczy jest istotna również dlatego, że – realistycznie zakładając, że badania mają ograniczone źródło finansowania – nie można jej cofnąć. Wykorzystując 100 tys. unikatowych i ręcznie zakodowanych tweetów przeprowadzono symulacje wyników klasyfikatora w zależności od kontrolowanego odsetka błędnie zakodowanych dokumentów. Na podstawie danych przedstawiono rekomendacje.
One of the critical decisions when manually coding text data is whether to verify the coders’ work. In the case of supervised models, this leads to a significant dilemma: is it better to provide the model with a large number of cases on which it will learn at the expense of verifying the correctness of the data, or whether it is better to code each case n-times, which will allow to compare the codes and check their correctness but at the same time will reduce the training dataset by n-fold. Such a decision not only affect the final results of the classifier. From the researchers’ point of view, it is also crucial because, realistically assuming that research has limited funding, it cannot be undone. The study uses a simulation approach and provides conclusions and recommendations based on 100,000 unique and hand-coded tweets.
Źródło:
Studia Socjologiczne; 2022, 2; 137-164
0039-3371
Pojawia się w:
Studia Socjologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies