Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Świderski, B." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Deep learning versus classical neural approach to mammogram recognition
Autorzy:
Kurek, J.
Świderski, B.
Osowski, S.
Kruk, M.
Barhoumi, W.
Powiązania:
https://bibliotekanauki.pl/articles/200919.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolutional neural networks
breast cancer diagnosis
mammogram recognition
diagnostic features
splotowe sieci neuronowe
diagnostyka raka piersi
rozpoznawanie
mammografia
cechy diagnostyczne
Opis:
Automatic recognition of mammographic images in breast cancer is a complex issue due to the confusing appearance of some perfectly normal tissues which look like masses. The existing computer-aided systems suffer from non-satisfactory accuracy of cancer detection. This paper addresses this problem and proposes two alternative techniques of mammogram recognition: the application of a variety of methods for definition of numerical image descriptors in combination with an efficient SVM classifier (so-called classical approach) and application of deep learning in the form of convolutional neural networks, enhanced with additional transformations of input mammographic images. The key point of the first approach is defining the proper numerical image descriptors and selecting the set which is the most class discriminative. To achieve better performance of the classifier, many image descriptors were defined by means of applying different characterization of the images: Hilbert curve representation, Kolmogorov-Smirnov statistics, the maximum subregion principle, percolation theory, fractal texture descriptors as well as application of wavelet and wavelet packets. Thanks to them, better description of the basic image properties has been obtained. In the case of deep learning, the features are automatically extracted as part of convolutional neural network learning. To get better quality of results, additional representations of mammograms, in the form of nonnegative matrix factorization and the self-similarity principle, have been proposed. The methods applied were evaluated based on a large database composed of 10,168 regions of interest in mammographic images taken from the DDSM database. Experimental results prove the advantage of deep learning over traditional approach to image recognition. Our best average accuracy in recognizing abnormal cases (malignant plus benign versus healthy) was 85.83%, with sensitivity of 82.82%, specificity of 86.59% and AUC = 0.919. These results are among the best for this massive database.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 831-840
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of temperature gradient on surface texture measurements with the use of profilometry
Autorzy:
Miller, T.
Adamczak, S.
Świderski, J.
Wieczorowski, M.
Łętocha, A.
Gapiński, B.
Powiązania:
https://bibliotekanauki.pl/articles/201056.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
profilometry
surface topography
temperature influence on measurements
credibility
profilometria
topografia powierzchni
wpływ temperatury na pomiary
wiarygodność
Opis:
The paper presents an analysis of influence of ambient temperature changes on the values of parameters in topography measurements with the use of different profilometry techniques. In order to check this, a series of measurements was performed. Two multiprofilometry instruments were used - a contact profilometer, further equipped with an interferometric transducer, and an optical one with a confocal probe. Measurements were performed on first-class flat interferometric glass and on an A-type roughness standard - under different conditions, with simultaneous registration of differences in ambient temperature values. These values were either intentionally changed or the temperature variations were the result of air conditioning control. The performed research showed that - despite the asperities on the surface being really small - there is a relationship between changes of temperature and the results obtained from the measured surface, which in some cases can be seriously distorted.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 1; 53-62
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies