Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neuro fuzzy models" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Merging of fuzzy models for neuro-fuzzy systems
Scalanie modeli rozmytych w systemach neuronowo-rozmytych
Autorzy:
Simiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/375698.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neuro-fuzzy
fuzzy set
rule merging
similarity
ANNBFIS
Opis:
The merging of fuzzy model is widely used for reduction of rule number in fuzzy model. The supernumerosity of rules is mainly caused by grid partition of input domain. In the paper different cause for model merging is described. It is the need for creation of fuzzy model for large data set. In our solution the models are build basing data subset and then the submodels are merged into one. This approach enables quicker elaboration of submodels with relatively good knowledge generalisation ability without waiting for the whole data set to be processed. With passing time, the subsequent submodels are created and merged to create the better model.
Artykuł opisuje scalanie modeli rozmytych w systemach neuronowo-rozmytych wykorzystywane przy tworzeniu modeli dla dużych zbiorów danych. Nieraz zbiory danych są tak duże, że nie jest możliwe wypracowanie modelu od razu dla całego zbioru. Tworzy się zatem modele dla podzbiorów zbioru danych. Uzyskane w ten sposób modele są następnie scalane, by wypracować jeden model. Podejście to jest także korzystne, gdy wszystkie dane nie są dostępne, ale są dostarczane partiami. Wtedy wstępny model jest wypracowany zanim wszystkie dane zostaną dostarczone do systemu. Artykuł przedstawia sposób wyznaczania podobieństwa reguł w modelu rozmytym oraz opisuje system neuronowo-rozmyty budujący i scalający modele wypracowane dla podzbiorów.
Źródło:
Theoretical and Applied Informatics; 2011, 23, 2; 107-126
1896-5334
Pojawia się w:
Theoretical and Applied Informatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Work Efficiency Prediction of Persons Working in Traffic Noise Environment Using Adaptive Neuro Fuzzy Inference System (ANFIS) Models
Autorzy:
Yadav, Manoj
Tandel, Bhaven
Powiązania:
https://bibliotekanauki.pl/articles/2141713.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
traffic noise
noise exposure
social questionnaire survey
human work efficiency
ANFIS prediction model
Opis:
A study was carried to assess the effect of traffic noise pollution on the work efficiency of shopkeepers in Indian urban areas. For this, an extensive literature survey was done on previous research done on similar topics. It was found that personal characteristics, noise levels in an area, working conditions of shopkeepers, type of task they are performing are the most significant factors to study effects on work efficiency. Noise monitoring, as well as a questionnaire survey, was done in Surat city to collect desired data. A total of 17 parameters were considered for assessing work efficiency under the influence of traffic noise. It is recommended that not more than 6 parameters should be considered for ANFIS modeling hence, before opting for the ANFIS modeling, most affecting parameters to work efficiency under the influence of traffic noise, was chosen by Structural Equation Model (SEM). As a result of the SEM model, two ANFIS prediction models were developed to predict the effect on work efficiency under the influence of traffic noise. R squared for model 1, for training data was 0.829 and for testing data, it was 0.727 and R squared for model 2 for training data was 0.828 and for testing data, it was 0.728. These two models can be used satisfactorily for predicting work efficiency under traffic noise environment for open shutter shopkeepers in tier II Indian cities.
Źródło:
Archives of Acoustics; 2021, 46, 4; 677-683
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies