Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "model prognostyczny" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Application of the strip yield model to crack growth predictions for structural steel
Zastosowanie modelu pasmowego płynięcia do prognozowania wzrostu pęknięć zmęczeniowych z stali konstrukcyjnej
Autorzy:
Skorupa, M.
Machniewicz, T.
Powiązania:
https://bibliotekanauki.pl/articles/140310.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
wzrost pęknięć zmęczeniowych
model prognostyczny
obciążenia zmiennoamplitudowe
stal konstrukcyjna
fatigue crack growth
prediction model
variable amplitude loading
structural steel
Opis:
A strip yield model implementation by the present authors is applied to predict fatigue crack growth observed in structural steel specimens under various constant and variable amplitude loading conditions. Attention is paid to the model calibration using the constraint factors in view of the dependence of both the crack closure mechanism and the material stress-strain response on the load history. Prediction capabilities of the model are considered in the context of the incompatibility between the crack growth resistance for constant and variable amplitude loading.
Opracowany przez Autorów model pasmowego płynięcia został zastosowany do prognozowania rozwoju pęknięć zmęczeniowych obserwowanych w badaniach zmęczeniowych próbek ze stali konstrukcyjnych w warunkach obciążeń stało- i zmiennoamplitudowych. Skoncentrowano się głównie na kalibracji modelu przy użyciu odpowiednio dobranych współczynników skrępowania uwzględniających zarówno mechanizm zamykania się pęknięcia jak i naprężeniowo-odkształceniową charakterystykę materiału właściwą dla danej historii obciążenia. Wyniki prognoz przy użyciu tak skalibrowanego modelu zostały poddane gruntownej ocenie z uwzględnieniem różnic w rozwoju pęknięć obserwowanych w przypadku obciążeń stało- i zmiennoamplitudowych.
Źródło:
Archive of Mechanical Engineering; 2010, LVII, 1; 5-20
0004-0738
Pojawia się w:
Archive of Mechanical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Traffic fatalities prediction based on support vector machine
Autorzy:
Li, T.
Yang, Y.
Wang, Y.
Chen, C.
Yao, J.
Powiązania:
https://bibliotekanauki.pl/articles/223743.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
traffic accident
support vector machine
SVM
particle swarm optimization (PSO)
PSO
prediction model
optimal parameters
wypadek drogowy
Particle Swarm Optimization
model prognostyczny
optymalne parametry
Opis:
To effectively predict traffic fatalities and promote the friendly development of transportation, a prediction model of traffic fatalities is established based on support vector machine (SVM). As the prediction accuracy of SVM largely depends on the selection of parameters, Particle Swarm Optimization (PSO) is introduced to find the optimal parameters. In this paper, small sample and nonlinear data are used to predict fatalities of traffic accident. Traffic accident statistics data of China from 1981 to 2012 are chosen as experimental data. The input variables for predicting accident are highway mileage, vehicle number and population size while the output variables are traffic fatality. To verify the validity of the proposed prediction method, the back-propagation neural network (BPNN) prediction model and SVM prediction model are also used to predict the traffic fatalities. The results show that compared with BPNN prediction model and SVM model, the prediction model of traffic fatalities based on PSO-SVM has higher prediction precision and smaller errors. The model can be more effective to forecast the traffic fatalities. And the method using particle swarm optimization algorithm for parameter optimization of SVM is feasible and effective. In addition, this method avoids overcomes the problem of “over learning” in neural network training progress.
Źródło:
Archives of Transport; 2016, 39, 3; 21-30
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies