Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "hipertermia" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Single-domain nanoparticle magnetic power losses calibrated with calorimetric measurements
Autorzy:
Miaskowski, A.
Sawicki, B.
Subramanian, M.
Powiązania:
https://bibliotekanauki.pl/articles/202219.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
magnetic fluid hyperthermia
calorimetric experiment
magnetic field
numerical modelling
hipertermia płynu magnetycznego
eksperyment kalorymetryczny
pole magnetyczne
modelowanie numeryczne
Opis:
The purpose of this study was to establish a numerical model for calorimetric measurements of magnetic fluids under an alternating magnetic field (AMF). The modified linear response theory (LRT) and Stoner-Wohlfarth theory were applied to investigate heat dissipation from the ferrofluid. The hysteresis area was calculated once the magnetic field value, applied frequency and number weighted distribution of the nanoparticles were known. Magnetic field distribution was calculated for the setup used for performing calorimetric experiments, and field dependent relaxation times were employed to calculate the specific loss power (SLP) in the sample. Subsequently, the results of numerical investigation were compared with the measurements obtained from calorimetric experiments. The Zeeman energy condition was used to delimit the area where LRT is valid. The numerical model calibrated with the calorimetric measurements allowed for the diffusion coefficient and the parameters involved in power dissipation in a ferrofluid to be determined. These parameters were then used to compute total heat dissipation and temperature distribution within the sample. The numerical model matching the calorimetric measurements of heat dissipation from ferrofluids enhanced the reliability of simulations.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 4; 509-516
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ultrasonic specific absorption rate in nanoparticle-mediated moderate hyperthermia
Autorzy:
Gambin, Barbara
Kruglenko, Eleonora
Powiązania:
https://bibliotekanauki.pl/articles/2173578.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ultrasonic hyperthermia
agar-based tissue mimicking phantom
magnetic nanoparticles
temperature
specific absorption rate
SAR
hipertermia ultradźwiękowa
fantom imitujący tkankę na bazie agaru
nanocząstki magnetyczne
temperatura
współczynnik absorpcji właściwej
Opis:
Magnetic nanoparticle’s different applications in nanomedicine, due to their unique physical properties and biocompatibility, were intensively investigated. Recently, Fe₃O₄ nanoparticles, are confirmed to be the best sonosensitizers to enhance the performance of HIFU (high intensity focused ultrasound). They are also used as thermo-sensitizers in magnetic hyperthermia. A new idea of dual, magneto-ultrasound, coupled hyperthermia allows the ultrasound intensity to be reduced from the high to a moderate level. Our goal is to evaluate the enhancement of thermal effects of focused ultrasound of moderate intensity due to the presence of nanoparticles. We combine experimental results with numerical analysis. Experiments are performed on tissue-mimicking materials made of the 5% agar gel and gel samples containing Fe₃O₄ nanoparticles with φ  = 100 nm with two fractions of 0.76 and 1.53% w/w. Thermocouples registered curves of temperature rising during heating by focused ultrasound transducer with acoustic powers of the range from 1 to 4 W. The theoretical model of ultrasound-thermal coupling is solved in COMSOL Multiphysics. We compared the changes between the specific absorption rates (SAR) coefficients determined from the experimental and numerical temperature rise curves depending on the nanoparticle fractions and applied acoustic powers.We confirmed that the significant role of nanoparticles in enhancing the thermal effect is qualitatively similarly estimated, based on experimental and numerical results. So that we demonstrated the usefulness of the FEM linear acoustic model in the planning of efficiency of nanoparticle-mediated moderate hyperthermia.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137053
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ultrasonic specific absorption rate in nanoparticle-mediated moderate hyperthermia
Autorzy:
Gambin, Barbara
Kruglenko, Eleonora
Powiązania:
https://bibliotekanauki.pl/articles/2173522.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ultrasonic hyperthermia
agar-based tissue mimicking phantom
magnetic nanoparticles
temperature
specific absorption rate
SAR
hipertermia ultradźwiękowa
fantom imitujący tkankę na bazie agaru
nanocząstki magnetyczne
temperatura
współczynnik absorpcji właściwej
Opis:
Magnetic nanoparticle’s different applications in nanomedicine, due to their unique physical properties and biocompatibility, were intensively investigated. Recently, Fe₃O₄ nanoparticles, are confirmed to be the best sonosensitizers to enhance the performance of HIFU (high intensity focused ultrasound). They are also used as thermo-sensitizers in magnetic hyperthermia. A new idea of dual, magneto-ultrasound, coupled hyperthermia allows the ultrasound intensity to be reduced from the high to a moderate level. Our goal is to evaluate the enhancement of thermal effects of focused ultrasound of moderate intensity due to the presence of nanoparticles. We combine experimental results with numerical analysis. Experiments are performed on tissue-mimicking materials made of the 5% agar gel and gel samples containing Fe₃O₄ nanoparticles with φ  = 100 nm with two fractions of 0.76 and 1.53% w/w. Thermocouples registered curves of temperature rising during heating by focused ultrasound transducer with acoustic powers of the range from 1 to 4 W. The theoretical model of ultrasound-thermal coupling is solved in COMSOL Multiphysics. We compared the changes between the specific absorption rates (SAR) coefficients determined from the experimental and numerical temperature rise curves depending on the nanoparticle fractions and applied acoustic powers.We confirmed that the significant role of nanoparticles in enhancing the thermal effect is qualitatively similarly estimated, based on experimental and numerical results. So that we demonstrated the usefulness of the FEM linear acoustic model in the planning of efficiency of nanoparticle-mediated moderate hyperthermia.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137053, 1--18
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies