Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fractional differential systems" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
On the existence of optimal consensus control for the fractional Cucker-Smale model
Autorzy:
Almeida, R.
Kamocki, R.
Malinowska, A. B.
Odzijewicz, T.
Powiązania:
https://bibliotekanauki.pl/articles/1409211.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
fractional calculus
fractional differential systems
flocking model
consensus
optimal control
Opis:
This paper addresses the nonlinear Cucker-Smale optimal control problem under the interplay of memory effect. The aforementioned effect is included by employing the Caputo fractional derivative in the equation representing the velocity of agents. Sufficient conditions for the existence of solutions to the considered problem are proved and the analysis of some particular problems is illustrated by two numerical examples.
Źródło:
Archives of Control Sciences; 2020, 30, 4; 625-651
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New perspectives of analog and digital simulations of fractional order systems
Autorzy:
Charef, A.
Charef, M.
Djouambi, A.
Voda, A.
Powiązania:
https://bibliotekanauki.pl/articles/229183.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
adjustable fractional operators
Charef approximation
fractional differential equation
ractional integrator
fractional systems
Opis:
In the recent decades, fractional order systems have been found to be useful in many areas of physics and engineering. Hence, their efficient and accurate analog and digital simulations and numerical calculations have become very important especially in the fields of fractional control, fractional signal processing and fractional system identification. In this article, new analog and digital simulations and numerical calculations perspectives of fractional systems are considered. The main feature of this work is the introduction of an adjustable fractional order structure of the fractional integrator to facilitate and improve the simulations of the fractional order systems as well as the numerical resolution of the linear fractional order differential equations. First, the basic ideas of the proposed adjustable fractional order structure of the fractional integrator are presented. Then, the analog and digital simulations techniques of the fractional order systems and the numerical resolution of the linear fractional order differential equation are exposed. Illustrative examples of each step of this work are presented to show the effectiveness and the efficiency of the proposed fractional order systems analog and digital simulations and implementations techniques
Źródło:
Archives of Control Sciences; 2017, 27, 1; 91-118
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Matrix Mittag‑Leffler function in fractional systems and its computation
Autorzy:
Matychyn, I.
Onyshchenko, V.
Powiązania:
https://bibliotekanauki.pl/articles/200538.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
matrix Mittag‑Leffler function
Jordan canonical form
fractional calculus
fractional differential equation
równanie różniczkowe cząstkowe
funkcja Mittag-Lefflera
rozkład Jordana
Opis:
Matrix Mittag‑Leffler functions play a key role in numerous applications related to systems with fractional dynamics. That is why the methods for computing the matrix Mittag‑Leffler function are so important. The matrix Mittag‑Leffler function is a generalization of matrix exponential function. This implies that some of numerous existing methods for computing the matrix exponential can be adapted for matrix Mittag‑Leffler functions as well. Unfortunately, the technique of scaling and squaring, widely used in computing of the matrix exponential, cannot be applied to matrix Mittag‑Leffler functions, as the latter do not possess the semigroup property. Here we describe a method of computing the matrix Mittag‑Leffler function based on the Jordan canonical form representation. This method is implemented with Matlab code [1].
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 4; 495-500
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies