Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "energy flow modeling" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Energy management system of the hybrid ultracapacitor-battery electric drive vehicles
Autorzy:
Pielecha, Ireneusz
Powiązania:
https://bibliotekanauki.pl/articles/1832900.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
electric vehicle
battery
ultracapacitor
energy flow modeling
pojazd elektryczny
bateria
ultrakondensator
Opis:
The search for new, alternative propulsion and energy sources in transport is one of the economic and technological priorities of the current decade. The modern development of hybrid drives and electric means of transport makes it possible to at least partially diversify conventional drive systems. The study discusses the use of a battery and ultracapacitor in electric vehicles. Simulation analyzes of energy flow were performed using the solutions of electric drive systems and various energy storage control algorithms. The research was carried out in relation to the use of braking energy, its con-version into electricity and its storage in a battery or ultracapacitor. The operating conditions of the battery and the ultra-capacitor were assessed in terms of specific energy consumption while driving. The article proposed the use of a drive system connected in series, the last link of which was an ultracapacitor. Such a solution significantly reduced the use of the battery as well as its regular charging-discharging. At the same time, it required the use of a high-capacity ultracapacitor, which contributed to increasing its charging time. The analyzes were carried out using standardized research tests as well as tests in real traffic conditions. The research was carried out with the use of the AVL Cruise software for the analysis of energy flow in vehicles; a middle class passenger vehicle was selected for the tests, equipped with an electrochemical battery and – in the next stage of the research – an ultracapacitor. Three research models were used: I) typical electric drive system; II) a system with the use of ultracapacitors ran by a simple control algorithm; III) a system with the use of ultracapacitors with an advanced control algorithm (the algorithm took into account the change of driving conditions to the ultracapacitor charging conditions). The advantages of using ultracapacitors in the electric drive of a vehicle were demonstrated, especially for results obtained in real traffic conditions. Analyzing the simulation tests results allowed to determine the most advantageous options of utilizing these systems, in particular in the aspect of increased possibilities of algorithms controlling the flow of electricity in the drive system.
Źródło:
Archives of Transport; 2021, 58, 2; 47-62
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigations of operation problems at a 200 MWe PF boiler
Autorzy:
Peta, S.
Toit, C. du
Naidoo, R.
Schmitz, W.
Jestin, L.
Powiązania:
https://bibliotekanauki.pl/articles/185774.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
process flow modeling
mass and energy balance
furnace CFD modeling
PF swirl burner
proces modelowania przepływu
bilans masy i energii
modelowanie pieca CFD
Opis:
To minimize oxides of nitrogen (NOx) emission, maximize boiler combustion efficiency, achieve safe and reliable burner combustion, it is crucial to master global boiler and at-the-burner control of fuel and air flows. Non-uniform pulverized fuel (PF) and air flows to burners reduce flame stability and pose risk to boiler safety by risk of reverse flue gas and fuel flow into burners. This paper presents integrated techniques implemented at pilot ESKOM power plants for the determination of global boiler air/flue gas distribution, wind-box air distribution and measures for making uniform the flow being delivered to burners within a wind-box system. This is achieved by Process Flow Modelling, at-the-burner static pressure measurements and CFD characterization. Global boiler mass and energy balances combined with validated site measurements are used in an integrated approach to calculate the total (stoichiometric + excess) air mass flow rate required to burn the coal quality being fired, determine the actual quantity of air that flows through the burners and the furnace ingress air. CFD analysis and use of at-the-burner static, total pressure and temperature measurements are utilized in a 2-pronged approach to determine root-causes for burner fires and to evaluate secondary air distribution between burners.
Źródło:
Chemical and Process Engineering; 2015, 36, 3; 305-320
0208-6425
2300-1925
Pojawia się w:
Chemical and Process Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies