Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "david, H." wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Cosmic Airburst on Developing Allerød Substrates (Soils) in the Western Alps, Mt. Viso Area
Autorzy:
Mahaney, William C.
West, Allen
Milan, Alison
Krinsley, David H.
Somelar, Peeter
Schwartz, Stephane
Milner, Michael W.
Allen, Christopher C.R.
Powiązania:
https://bibliotekanauki.pl/articles/2025231.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Black Mat impact/airburst
Reconstructed soil at time of YDB
mid-LG-YD paleosol Sedimentary products of cosmic impact/glacial recession
Nauki o Ziemi
Opis:
Although much has been written about a cosmic impact event in the Western Alps of the Mt. Viso area, the event closely tied with the Younger Dryas Boundary (YDB) of 12.8 ka and onset of the Younger Dryas (YD), the affected land surface is considered to contain a similar black mat suite of sediment found on three continents. While work elsewhere has focused on recovered sediment from lake and ice cores, buried lacustrine/alluvial records, and surface glacial and paraglacial records, no one has traced a mountain morphosequence of deposits with the objective of investigating initial weathering/ soil morphogenesis that occurred in ice recessional deposits up to the YDB when the surface was subjected to intense heat, presumably, as hypothesized by Mahaney et al. (2016a) from a cosmic airburst. With the land surface rapidly free of ice following glacial retreat during the Bølling-Allerød interstadial, weathering processes ~13.5 to 12.8 ka led to weathering and soil morphogenesis in a slow progression as the land surface became free of ice. To determine the exposed land character in the mid- to late-Allerød, it is possible to utilize an inverted stratigraphic soil morphogenesis working backward in time, from known post-Little Ice Age (LIA) (i.e. time-zero) through LIA (~0.45 to ~0.10 ka), to at least the middle Neoglacial (~2 ka), to answer several questions. What were the likely soil profile states in existence at the end of the Allerød just prior to the cosmic impact/airburst (YDB)? Assuming these immature weathered regolith sections of the Late Allerød approximated the <1 ka old profiles seen today, and assuming the land surface was subjected to a hypothesized instant temperature burst from ambient to ~2200oC at ~12.8 ka, what would be the expected effect on the resident sediment? To test the mid-LG (YDB) to YD relationship we analyzed the paleosols in both suites of deposits – mid-LG to YD – to test that the airburst grains are restricted to Late Allerød paleosols and using relative-age-determination criteria, that the overlapping YD to mid-LG moraines are closely related in time. These are some of the questions about the black mat that we seek to answer with reference to sites in the upper Guil and Po rivers of the Mt. Viso area.
Źródło:
Studia Quaternaria; 2018, 35; 3-23
1641-5558
2300-0384
Pojawia się w:
Studia Quaternaria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numerical investigation and sensitivity analysis of turbulent heat transfer and pressure drop of Al2O3/H2O nanofluid in straight pipe using response surface methodology
Autorzy:
Fadodun, Olatomide G.
Amosun, Adebimpe A.
Salau, Ayodeji O.
Olaloye, David O.
Ogundeji, Johnson A.
Ibitoye, Francis I.
Balogun, Fatai A.
Powiązania:
https://bibliotekanauki.pl/articles/239962.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nusselt number
Reynolds number
pressure drop
response surface methodology
nanofluid
single phase flow
Opis:
In this paper, investigation of the effect of Reynolds number, nanoparticle volume ratio, nanoparticle diameter and entrance temperature on the convective heat transfer and pressure drop of Al2O3/H2O nanofluid in turbulent flow through a straight pipe was carried out. The study employed a computational fluid dynamic approach using single-phase model and response surface methodology for the design of experiment. The Reynolds average Navier-Stokes equations and energy equation were solved using k-ε turbulent model. The central composite design method was used for the response-surface-methodology. Based on the number of variables and levels, the condition of 30 runs was defined and 30 simulations were performed. New models to evaluate the mean Nusselt number and pressure drop were obtained. Also, the result showed that all the four input variables are statistically significant to the pressure drop while three out of them are significant to the Nusslet number. Furthermore, sensitivity analysis carried out showed that the Reynolds number and volume fraction have a positive sensitivity to both the mean Nusselt number, and pressure drop, while the entrance temperature has negative sensitivities to both.
Źródło:
Archives of Thermodynamics; 2020, 41, 1; 3-30
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies