Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "artificial soil" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Recycling of selected fraction of municipal solid waste as artificial soil substrate in support of the circular economy
Autorzy:
Alwaeli, Mohamed
Alshawaf, Mohammad
Klasik, Marta
Powiązania:
https://bibliotekanauki.pl/articles/2232549.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
municipal solid waste
artificial soil substrates
crop production
soil deficiency
germination rate
odpady komunalne stałe
gleba
szybkość kiełkowania
produkcja roślinna
składniki gleby
sztuczna gleba
Opis:
Regions with warm climate are poor in organic matter or have a deficit of soil. The purpose of the work was to select the optimal mix from biodegradable wastes such as cardboard (Cb), natural textiles (Tx) newspaper (Np), colored newspaper (Cp), and office paper (Op) for creating artificial soil by combining these materials with compost and sand. To select the optimum mix, 15 samples were taken (3 from each type of waste in the following proportions: 25%, 50% and 75% ). The optimum mix was analyzed for grass germination rate and root development. Tests were performed in the laboratory with conditions similar to those of regions with warm climate and soil deficiency in a specially designed testing spot (bioterm). The effects of particular mixes on plant germination rate and growth were measured. Out of all mixes, the textile compositions Tx50 and Tx25 supported best the plant propagation. During the whole experimental process, the grass showed various growth tendencies. The best results for grass height were observed for mixes with textiles and colored newspaper. Based on this data and subsequent laboratory research, the best substrate composition was selected. For the whole period of the tests, germination rate in the pot with the mix was higher than the germination rate in the control sample with compost. Considering the experimental conditions of this research, the tested substrates can be used to aid in plant propagation, especially in regions with warm climate and soil deficiencies, and for restoration of damaged land areas.
Źródło:
Archives of Environmental Protection; 2022, 48, 4; 68--77
2083-4772
2083-4810
Pojawia się w:
Archives of Environmental Protection
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of the unit weight of organic soils from a CPTM using an Artificial Neural Networks
Wyznacznie ciężaru objętościowego gruntu organicznego na podstawie badań CPTM z zastosowaniem sztucznych sieci neuronowych
Autorzy:
Straż, Grzegorz
Borowiec, Artur
Powiązania:
https://bibliotekanauki.pl/articles/1852298.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ciężar objętościowy
sieć neuronowa sztuczna
grunt organiczny
sonda statyczna
sonda stożkowa
CPTM
unit weight
artificial neural network
organic soil
organic content
cone penetration test
Opis:
This paper discusses the use of mechanical cone penetration test CPTM for estimating the soil unit weight of selected organic soils in Rzeszow site, Poland. A search was made for direct relationships between the empirically determined the soil unit weight value and cone penetration test leading parameters (cone resistance qc, sleeve friction fs. The selected, existing models were also analysed in terms of suitability for estimating the soil unit weight and tests were performed to predict the value soil unit weight of local, different organic soils. Based on own the regression analysis, the relationships between empirically determined values of soil unit weight and leading parameters cone penetration test were determined. The results of research and analysis have shown that both existing models and new, determined regression analysis methods are poorly matched to the unit weight values determined in laboratory, the main reason may be the fact that organic soils are characterized by an extremely complicated, diverse and heterogeneous structure. This often results in a large divergence and lack of repeatability of results in a satisfactorily range. Therefore, in addition, to improve the predictive performances of the relationships, analysis using the artificial neural networks (ANN) was carried out.
W artykule zaprezentowano możliwości zastosowania wyników badań terenowych uzyskanych za pomocą stożkowej sondy statycznej CPTM (ze stożkiem mechanicznym) do wyznaczania ciężaru objętościowego wybranych gruntów organicznych zlokalizowanych na terenie Rzeszowa. Głównym celem prowadzonych badań było poszukiwanie bezpośrednich zależności pomiędzy między wyznaczonymi w warunkach laboratoryjnych wartościami ciężaru objętościowego gruntu γt a parametrami wiodącymi dla badania sondą statyczną CPTM, którymi są: opór gruntu podczas zagłębiania stożka qc oraz opór tarcia na tulei ciernej fs. Testy laboratoryjne wykonano na próbkach o nienaruszonej strukturze, pobranych z otworów kontrolnych umiejscowionych w bezpośrednim sąsiedztwie punktów sondowania, co pozwoliło na pozyskanie reprezentatywnych próbek gruntów o szerokim spectrum zawartości części organicznych od 5,02 do 84,93%. Wykorzystując metodę standardowej analizy regresji określono zależności między empirycznie wyznaczonymi wartościami ciężaru objętościowego badanych gruntów organicznych, a parametrami wyznaczonymi za pomocą sondy statycznej w warunkach in situ. Wykorzystano również szereg modeli literaturowych, opracowanych przez prezentujących je badaczy dla różnych ośrodków gruntowych i parametrów wiodących. Niestety, analiza regresji wykazała, że zarówno istniejące modele, jak i nowe są słabo dopasowane do wartości ciężaru objętościowego wyznaczonych w laboratorium. Głównym powodem może być fakt, że grunty organiczne charakteryzują się niezwykle skomplikowaną budową, różnorodną i niejednorodną strukturą, a przede wszystkim bardzo zróżnicowaną zawartością części organicznych, które mogą lokalnie różnić się genezą czy składem chemicznym. Czynniki te mają wpływ na wyjątkowo dużą rozbieżność i brak powtarzalności uzyskiwanych wyników w zadowalającym zakresie. Dlatego, dodatkowo, aby poprawić predykcyjne działanie zależności, przeprowadzono analizę z wykorzystaniem sztucznych sieci neuronowych (SSN). Porównanie wyników zastosowania standardowej regresji i sieci neuronowych w celu prognozowania ciężaru objętościowego wybranych gruntów organicznych na podstawie wyników sondowania statycznego wykazało, że sieci neuronowe są dokładniejsze. Maksymalne wartości median uzyskanych w analizach statystycznych współczynników determinacji (R2) testowanych modeli wynosiły odpowiednio 0,353 i 0,564. Wynik wykorzystania sieci neuronowych nie jest zadowalający, ale bardzo obiecujący. W związku z tym, planowana jest kontynuacja prac z wykorzystaniem analizy za pomocą sztucznych sieci neuronowych, lecz z zastosowaniem różnych kryteriów kategoryzowania lokalnych gruntów organicznych.
Źródło:
Archives of Civil Engineering; 2021, 67, 3; 259-281
1230-2945
Pojawia się w:
Archives of Civil Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies