Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Classification method" wg kryterium: Wszystkie pola


Tytuł:
A Fast Classification Method of Faults in Power Electronic Circuits Based on Support Vector Machines
Autorzy:
Cui, J.
Shi, G.
Gong, C.
Powiązania:
https://bibliotekanauki.pl/articles/220922.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
power electronics
fault diagnosis
wavelet transforms
support vector machines
directed acyclic graph
nearest neighbours
Opis:
Fault detection and location are important and front-end tasks in assuring the reliability of power electronic circuits. In essence, both tasks can be considered as the classification problem. This paper presents a fast fault classification method for power electronic circuits by using the support vector machine (SVM) as a classifier and the wavelet transform as a feature extraction technique. Using one-against-rest SVM and one-against-one SVM are two general approaches to fault classification in power electronic circuits. However, these methods have a high computational complexity, therefore in this design we employ a directed acyclic graph (DAG) SVM to implement the fault classification. The DAG SVM is close to the one-against-one SVM regarding its classification performance, but it is much faster. Moreover, in the presented approach, the DAG SVM is improved by introducing the method of Knearest neighbours to reduce some computations, so that the classification time can be further reduced. A rectifier and an inverter are demonstrated to prove effectiveness of the presented design.
Źródło:
Metrology and Measurement Systems; 2017, 24, 4; 701-720
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Measurement and classification methods using the ASAE S572.1 reference nozzles
Autorzy:
Fritz, B.K.
Hoffmann, W.C.
Czaczyk, Z.
Bagley, W,
Kruger, G.
Henry, R.
Powiązania:
https://bibliotekanauki.pl/articles/66858.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
measurement method
classification method
droplet size
laser diffraction
reference nozzle
Opis:
An increasing number of spray nozzle and agrochemical manufacturers are incorporating droplet size measurements into both research and development. Each laboratory invariably has their own sampling setup and procedures. This is particularly true about measurement distance from the nozzle and concurrent airflow velocities. Both have been shown to significantly impact results from laser diffraction instruments. These differences can be overcome through the use of standardized reference nozzles and relative spray classification categories. Sets of references nozzles, which defined a set of classification category thresholds, were evaluated for droplet size under three concurrent air flow velocities (0.7, 3.1 and 6.7 m/s). There were significant, though numerically small, differences in the droplet size data between identical reference nozzles. The resulting droplet size data were used to categorize a number of additional spray nozzles at multiple pressure and air flow velocities. This was done to determine if similar classifications were given across the different airspeeds. Generally, droplet size classifications agreed for all airspeeds, with the few that did not, only differing by one category. When reporting droplet size data, it is critical that data generated from a set of reference nozzles also be presented as a means of providing a relative frame of reference.
Źródło:
Journal of Plant Protection Research; 2012, 52, 4
1427-4345
Pojawia się w:
Journal of Plant Protection Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ekonomiczno-Społeczne Uwarunkowania Migracji Wewnętrznych W Polsce W Świetle Metody Drzew Klasyfikacyjnych
Economic and Social Determinants of Internal Migration in Poland in the Light of the Classification Trees Method
Autorzy:
Matusik, Stanisław
Pietrzak, Michał Bernard
Wilk, Justyna
Powiązania:
https://bibliotekanauki.pl/articles/418320.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
classification trees method
internal migration
economic and social factors
Opis:
This paper analyses socio-economic determinants of migration flows between Polish sub-regions in the years 2008-2010 by using the classification trees (CART) method. Six explanatory variables are selected to determine migration, including GDP per capita, number of economic entities (firms) per 100 inhabitants, investment assets and tangible assets per capita, registered unemployment rate, as well as average monthly salary. The CART method is then used to build models explaining the classification of migration flows into four quartile-based categories. The results confirm that the classification of internal migration flows is strongly determined by socio-economic features, in particular the number of economic entities, investment assets per capita and the unemployment rate. The suburbanisation from cities to neighbouring sub-regions is clearly demonstrated. Better developed regions, especially the largest Polish cities, have the highest migration outflows as well as inflows, yet retain positive net migration. We argue that the proposed analytical approach enables to determine the multidimensional relationships between explanatory social-economic variables and the migration coefficients under study.
Źródło:
Studia Demograficzne; 2012, 162, 2; 3-28
0039-3134
Pojawia się w:
Studia Demograficzne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning classification and recognition method for milling surface roughness combined with simulation data
Autorzy:
Lu, Lingli
Yi, Huaian
Shu, Aihua
Qin, Jianhua
Lu, Enhui
Powiązania:
https://bibliotekanauki.pl/articles/2203367.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
milling surface
classification
deep neural network
simulation
Opis:
To address the problem that a deep neural network needs a sufficient number of training samples to have a good prediction performance, this paper firstly used the Z-Map algorithm to generate a simulated profile of the milling surface and construct an optical simulation model of surface imaging to supplement the training sample size of the neural network. Then the Deep CORAL model was used to match the textures of the simulated samples and the actual samples across domains to solve the problem that the simulated samples were not in the same domain as the actual milling samples. Experimental results have shown that high texture matching could be achieved between optical simulation images and actual images, laying the foundation for expanding the actual milled workpiece images with the simulation images. The deep convolutional neural model Xception was used to predict the classification of six classes of data sets with the inclusion of simulation images, and the accuracy was improved from 86.48% to 92.79% compared with the model without the inclusion of simulation images. The proposed method solves the problem of the need for a large number of samples for deep neural networks and lays the foundation for similar methods to predict surface roughness for different machining processes.
Źródło:
Metrology and Measurement Systems; 2023, 30, 1; 117--138
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improved classification robust Kalman filtering method for precise point positioning
Autorzy:
Zhang, Qieqie
Zhao, Long
Zhou, Jianhua
Powiązania:
https://bibliotekanauki.pl/articles/220468.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Kalman filter
classification robust
equivalent weight function
precise point positioning
Opis:
The accuracy and reliability of Kalman filter are easily affected by the gross errors in observations. Although robust Kalman filter based on equivalent weight function models can reduce the impact of gross errors on filtering results, the conventional equivalent weight function models are more suitable for the observations with the same noise level. For Precise Point Positioning (PPP) with multiple types of observations that have different measuring accuracy and noise levels, the filtering results obtained with conventional robust equivalent weight function models are not the best ones. For this problem, a classification robust equivalent weight function model based on the t-inspection statistics is proposed, which has better performance than the conventional equivalent weight function models in the case of no more than one gross error in a certain type of observations. However, in the case of multiple gross errors in a certain type of observations, the performance of the conventional robust Kalman filter based on the two kinds of equivalent weight function models are barely satisfactory due to the interaction between gross errors. To address this problem, an improved classification robust Kalman filtering method is further proposed in this paper. To verify and evaluate the performance of the proposed method, simulation tests were carried out based on the GPS/BDS data and their results were compared with those obtained with the conventional robust Kalman filtering method. The results show that the improved classification robust Kalman filtering method can effectively reduce the impact of multiple gross errors on the positioning results and significantly improve the positioning accuracy and reliability of PPP.
Źródło:
Metrology and Measurement Systems; 2019, 26, 2; 267-281
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Method to Make Classification of the Heat Treatment Processes Performed on Bronze Using Incomplete Knowledge
Autorzy:
Kluska-Nawarecka, S.
Górny, Z.
Regulski, K.
Wilk-Kołodziejczyk, D.
Jančíková, Z.
David, J.
Powiązania:
https://bibliotekanauki.pl/articles/947501.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information technology
foundry industry
heat treatment
classification algorithms
rough sets
data mining
technologia informacyjna
przemysł odlewniczy
obróbka cieplna
algorytmy klasyfikacyjne
zbiory przybliżone
Opis:
The article describes the problem of selection of heat treatment parameters to obtain the required mechanical properties in heat- treated bronzes. A methodology for the construction of a classification model based on rough set theory is presented. A model of this type allows the construction of inference rules also in the case when our knowledge of the existing phenomena is incomplete, and this is situation commonly encountered when new materials enter the market. In the case of new test materials, such as the grade of bronze described in this article, we still lack full knowledge and the choice of heat treatment parameters is based on a fragmentary knowledge resulting from experimental studies. The measurement results can be useful in building of a model, this model, however, cannot be deterministic, but can only approximate the stochastic nature of phenomena. The use of rough set theory allows for efficient inference also in areas that are not yet fully explored.
Źródło:
Archives of Foundry Engineering; 2014, 14, 2; 69-72
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie skuteczności klasyfikacji w oparciu o wykorzystanie metody laserowego pomiaru wielkości ziaren
Investigations of the effectiveness of the classification based on the laser method of the grain size estimation
Autorzy:
Holtzer, M.
Dańko, R.
Skrzyński, M.
Powiązania:
https://bibliotekanauki.pl/articles/380400.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
masa formierska
regeneracja masy formierskiej
masa zużyta
analiza ziarnowa
dyfrakcja laserowa
moulding sand
sand reclamation
used sand
grain analysis
laser diffraction
Opis:
Analiza granulometryczna jest istotnym parametrem, za pomocą którego ocenia się prawidłowość przebiegu wielu procesów przeróbczych a jej wyniki stanowią istotny element oceny i optymalizacji parametrów pracy tego typu urządzeń. Z tego powodu bardzo istotne jest stosowanie najbardziej precyzyjnych sposobów oceny składu granulometrycznego materiałów polidyspersyjnych, zgodnie z najnowszymi osiągnięciami techniki pomiarowej w tym zakresie. Najnowszymi urządzeniami do pomiaru wielkości cząstek są urządzenia wykorzystujące zjawisko dyfrakcji laserowej. W artykule przedstawiono badania skuteczności klasyfikacji w oparciu o wykorzystanie metody laserowego pomiaru wielkości ziaren. W ramach badań przeprowadzono badania skuteczności klasyfikacji w urządzeniu kaskadowym regeneratu po regeneracji masy zużytej z żywicą furfurylową FR 75 A. W wyniku badań stwierdzono, że przy wydajnościach podawania nadawy w zakresie 0,5-1,0 Mg/h przy prędkości powietrza ok. 1 m/s następuje oddzielenie z zapylonej masy 80-85% pyłów i frakcji o prześwicie poniżej sita 0,1 mm, a niekiedy poniżej sita 0,16 mm.
A grain size analysis is an essential parameter, by means of which the correctness of several treatment processes is estimated, and its results constitute an essential element of assessment and optimization of operational parameters of this type of devices. Due to that, it is very important to apply the most accurate ways of assessing the grain size composition of polydispersive materials - in accordance with the newest achievements of the measuring technique. The most advanced devices for grain size measurements are the ones utilising the laser diffraction effect. The investigations of the effectiveness of the classification performed on the basis of the laser method of grain size measurements are presented in the paper. The effectiveness of the classification of the reclaimed spent sand with the FR 75 A furfuryl resin in the cascade device was checked. It was found that at the feed material supply being in the range: 0.5-1.0 Mg/h, at the air velocity app. 1 m/s the separation of 80-85% of dusts and fractions, of a clearance below 0.1 mm sieve and sometimes below 0.16 mm sieve, occurs.
Źródło:
Archives of Foundry Engineering; 2012, 12, 1s; 63-68
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparing continuity and compactness of choropleth map classes
Autorzy:
Całka, B.
Powiązania:
https://bibliotekanauki.pl/articles/145406.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
klasyfikacja danych
zagospodarowanie przestrzenne
zaludnienie obszaru
data classification
choropleth map
neighbourhood analysis
spatial contiguity analysis
head-tail breaks method
Opis:
Population density varies sharply from place to place on the whole territory of Poland. The largest number of people per 1 km2 is 21,531, while uninhabited areas account for about 48% of the country. Such uneven, non-Gaussian distribution of the data causes some difficulty in choosing the classification method in geometric choropleth maps. A thorough evaluation of a geometric choropleth map of population data is not possible using only traditional indicators such as the Tabular Accuracy Index (TAI). That is why the aim of the article is to develop an innovative index based on distance analysis and neighbour analysis of grid cells. Two indexes have been suggested in this paper: the Spatial Distance Index (SDI) and the Spatial Contiguity Index (SCI). The paper discusses the use of five classification methods to evaluate choropleth maps of population data, like head-tail breaks, natural breaks, equal intervals, quantile, and geometrical intervals. A comprehensive assessment of such geometric choropleth maps is also done. The research was conducted for the whole territory of Poland, using data from the 2011 National Census of Population and Housing. Population data are presented in the 1km grid. The results of the analysis are shown on thematic maps. A compatibility of the choropleth maps with urban-rural typology of the OECD (Organisation for Economic Co-operation and Development) was also checked.
Źródło:
Geodesy and Cartography; 2018, 67, 1; 21-34
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Faults Classification Of Power Electronic Circuits Based On A Support Vector Data Description Method
Autorzy:
Cui, J.
Powiązania:
https://bibliotekanauki.pl/articles/220938.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
power electronic circuits
fault classification
support vector data description
support vector machine (SVM)
Opis:
Power electronic circuits (PECs) are prone to various failures, whose classification is of paramount importance. This paper presents a data-driven based fault diagnosis technique, which employs a support vector data description (SVDD) method to perform fault classification of PECs. In the presented method, fault signals (e.g. currents, voltages, etc.) are collected from accessible nodes of circuits, and then signal processing techniques (e.g. Fourier analysis, wavelet transform, etc.) are adopted to extract feature samples, which are subsequently used to perform offline machine learning. Finally, the SVDD classifier is used to implement fault classification task. However, in some cases, the conventional SVDD cannot achieve good classification performance, because this classifier may generate some so-called refusal areas (RAs), and in our design these RAs are resolved with the one-against-one support vector machine (SVM) classifier. The obtained experiment results from simulated and actual circuits demonstrate that the improved SVDD has a classification performance close to the conventional one-against-one SVM, and can be applied to fault classification of PECs in practice.
Źródło:
Metrology and Measurement Systems; 2015, 22, 2; 205-220
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of water masses in the Bransfield Strait and southern part of the Drake Passage using a method of statistical multidimensional analysis
Autorzy:
Tokarczyk, Ryszard
Powiązania:
https://bibliotekanauki.pl/articles/2053235.pdf
Data publikacji:
1987
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Antarctica
hydrology
water masses classification
Źródło:
Polish Polar Research; 1987, 8, 4; 333-366
0138-0338
2081-8262
Pojawia się w:
Polish Polar Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Smart Substation Network Fault Classification Based on a Hybrid Optimization Algorithm
Autorzy:
Xia, Xin
Liu, Xiaofeng
Lou, Jichao
Powiązania:
https://bibliotekanauki.pl/articles/227220.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
smart substation
network fault classification
improved separation interval method (ISIM)
support vector
machine (SVM)
Anti-noise processing (ANP)
Opis:
Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 4; 657-663
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Równoległe ścieżki emerytalne – koncepcja kalkulacji świadczeń dla osób z różnych typów gospodarstwa domowego
Autorzy:
Jajko-Siwek, Alicja
Powiązania:
https://bibliotekanauki.pl/articles/473394.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
pension
calculation method
rate of return
classification trees
emerytura
kalkulacja świadczenia emerytalnego
stopa zastąpienia
drzewo klasyfikacyjne
Opis:
Polski system emerytalny preferuje osoby, które długo pracują i uzyskują wysokie wynagrodzenia. Tylko tacy uczestnicy systemu uzyskają dostatecznie wysokie świadczenia. System nie uwzględnia faktu występowania zróżnicowanych typów gospodarstwa domowego, z którym wiążą się różne oczekiwania i możliwości w trakcie cyklu życia przyszłych emerytów. Celem artykułu jest prezentacja zróżnicowanych koncepcji kalkulacji świadczeń emerytalnych dla osób z różnych typów gospodarstwa, uwzględniających zróżnicowane preferencje tych osób. W oszacowaniach położono szczególny nacisk na kwestie dzietności, wskazując na wyjątkowo trudną sytuację rodzin z dużą liczbą dzieci i akcentując potrzebę powiązania poziomu emerytury z liczbą posiadanych dzieci. Podstawową zmienną, na której przeprowadzono analizy, była stopa zastąpienia wynagrodzenia świadczeniem emerytalnym. Stopy zastąpienia poddano ocenie za pomocą drzew klasyfikacyjnych.
The pension system in Poland favours persons which work long and obtain the high wage. The main aim of this paper is to present the diversified concepts of the pension benefits calculation depending on the type of the household. The special attention is paid to the problem of fertility, because of particularly difficult situation of families with high number of children. Analysis were carried out with a replacement rate as a basic indicator. In the second step various replacement rates were assessed with help of classification trees.
Źródło:
Problemy Polityki Społecznej. Studia i Dyskusje; 2015, 29(2); 35-46
1640-1808
Pojawia się w:
Problemy Polityki Społecznej. Studia i Dyskusje
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A method of feature selection in the aspect of specific identification of radar signals
Autorzy:
Dudczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/200837.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
radar emitter recognition
RER
specific emitter identification
SEI
minimum distance classification
ELINT system
klasyfikator minimalnej odległości
System ELINT
Opis:
This article presents an important task of classification, i.e. mapping surfaces which separate patterns in feature space in the scope of radar emitter recognition (RER) and classification. Assigning a tested radar to a particular class is based on defining its location from the discriminating areas. In order to carry out the classification process, it is necessary to define metrics in the feature space as it is essential to estimate the distance of a classified radar from the centre of the class. The method presented in this article is based on extraction and selection of distinctive features, which can be received in the process of specific emitter identification (SEI) of radar signals, and on the minimum distance classification. The author suggests a RER system which consists of a few independent channels. The task of each channel is to calculate the distance of the tested radar from a given class and finally, set the correct identification coefficient for each recognized radar. Thus, a multichannel system with independent distance measurement is obtained, which makes it possible to recognize particular radar copies. This system is implemented in electronic intelligence (ELINT) system and tested in real battlefield conditions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2017, 65, 1; 113-119
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selection of data mining method for multidimensional evaluation of the manufacturing process state
Autorzy:
Rogalewicz, M.
Piłacińska, M.
Kujawińska, A.
Powiązania:
https://bibliotekanauki.pl/articles/407333.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
jakość kontroli
proces produkcji
eksploaracja danych
metoda
klasyfikacja
quality control
process state evaluation
data mining methods
classification
Opis:
The article deals with the issues involved in evaluating the process state on the basis of many measures, including: process parameters, diagnostic signals and events occurring during the process. These measures as well as those measurements traditionally used in the evaluation of process capability, offer a relevant source of information about the manufacturing process and the authors attempted to ascertain the most suitable method, or group of methods, for achieving this. They present the main criteria for the categorization division of the methods of the manufacturing process state evaluation and, from those identified, distinguish the traditional from Data Mining methods. The authors then specify some basic requirements regarding the desired method or group of methods and focus on the classification problem. A division and classification of the methods is made and briefly described. Finally, the authors specify the criteria for their selection of the Data Mining method type as being the most appropriate for the evaluation of the manufacturing process state and, from within this type, offer the most suitable groups of methods. Some directions for further research are discussed at the end of the article.
Źródło:
Management and Production Engineering Review; 2012, 3, 2; 27-35
2080-8208
2082-1344
Pojawia się w:
Management and Production Engineering Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of new method of initialisation of neuro - fuzzy systems with support vector machines
Analiza nowej metody inicjalizacji systemów neuronowo – rozmytych z wykorzystaniem maszyn wektorów wspierających
Autorzy:
Simiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/375675.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
support vector machine (SVM)
neuro-fuzzy systems
classification
regression
Opis:
The correspondence between support vector machines and neuro-fuzzy systems is very interesting. The full equivalence for classification and partial for regression has been formally shown. The equivalence has very interesting implication. It is a base for a new method of initialization of neurofuzzy systems, ie. for creating of fuzzy rule base. The commonly used methods are based on reversion of item: the premises of fuzzy rules split input domain into region, thus premises of fuzzy rules can be elaborated by partition of input domain. This leads to three main classes of partition of input domain. The above mentioned equivalence results in new way of creating the rule base. Now the input domain is not partitioned, but the premises of fuzzy rules are extracted from support vector. The objective of the paper is to examine the advantages and disadvantages of this new method for creation of fuzzy rule bases for neuro-fuzzy systems.
Związek pomiedzy maszynami wektorów podpierajacych i systemami neuronoworozmytymi jest bardzo interesujący. Została wykazana pełna odpowiedniość między tymi systemami dla klasyfikacji i częściowa dla regresji. Odpowiedność ta ma bardzo ważną konsekwencję. Jest podstawa do opracowania nowego sposobu tworzenia bazy reguł dla systemu neuronowo-rozmytego. Dotychczasowe metody opieraja się na podziale przestrzeni wejściowej, a następnie przekształcenia tak powstałych regionów w przesłanki rozmytych reguł. Tutaj możliwe jest przekształcanie wektorów wspierających na przesłanki reguł rozmytych. Celem artykułu jest przebadanie możliwości stosowania takiego podejścia do inicjalizacji systemów neuronowo-rozmytych. Eksperymenty wykazują dosć istotną wadę tego podejścia. W jego wyniku powstają bardzo liczne zbiory reguł rozmytych, co zupełnie przeczy idei interpretowalności wiedzy w systemach neuronowo-rozmytych. Manipulacja pewnymi parametrami umożliwia zmiejszenie liczby reguł, jednak manipulacja ta jest trudna i wymaga wielu prób. Drugą dość istotna wadą jest wyraźnie wyższy błąd wypracowywany przez systemy inicjalizowane przez SVM w porównaniu do systemów, których bazy reguł tworzone sa˛ poprzez podział przestrzeni wejściowej.
Źródło:
Theoretical and Applied Informatics; 2012, 24, 3; 243-254
1896-5334
Pojawia się w:
Theoretical and Applied Informatics
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies