Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bayesian classifier" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
A source discrimination method of mine water-inrush based on 3D spatial interpolation of rare classes
Analiza dyskryminacyjna źródeł wycieków wody do kopalni na podstawie trójwymiarowej interpolacji danych o zdarzeniach rzadkich
Autorzy:
Jiang, Qiong
Zhao, Weidong
Zheng, Yong
Wei, Jiajia
Wei, Chao
Powiązania:
https://bibliotekanauki.pl/articles/219790.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
analiza dyskryminacyjna źródeł wycieków
wyciek wód
jakość wód
kryterium Bayesowskie
kategoria zdarzeń rzadkich
source discrimination
water inrush
water quality
Bayesian classifier
rare class
Opis:
When the distribution of water quality samples is roughly balanced, the Bayesian criterion model of water-inrush source generally can obtain relatively accurate results of water-inrush source identification. However, it is often difficult to achieve desired classification results when training samples are imbalanced. Sample imbalance is common in the source identification of mine water-inrush. Therefore, we propose a three-dimensional (3D) spatial resampling method based on rare water quality samples, which achieves the balance of water quality samples. Based on the virtual water sample points distributed by the 3D grid, the method uses the 3D Inverse Distance Weighting (IDW) method to interpolate the groundwater ion concentration of the virtual water samples to achieve oversampling of rare water samples. Case study in Gubei Coal Mine shows that the method improves overall discriminant accuracy of the Bayesian criterion model by 5.26%, from 85.26% to 90.69%. In particular, the discriminative precision of the rare class is improved from 0% to 83.33%, which indicates that the method can improve the discriminant accuracy of the rare class to large extent. In addition, this method increases the Kappa coefficient of the model by 19.92%, from 52.26% to 72.19%, increasing the degree of consistency from “general” to “significant”. Our research is of significance to enriching and improving the theory of prevention and treatment of mine water damage.
W przypadku zrównoważonych danych o jakościowym rozkładzie próbek, zastosowanie kryterium Bayesowskiego do modelowania źródeł wycieków daje stosunkowo dokładne wyniki w analizie dyskryminacyjnej źródeł wycieków wody kopalnianej. Jednakże w przypadku niezrównoważonych danych, pożądane efekty kategoryzacji są niezmiernie trudne do uzyskania. Dane o składzie próbek są w znacznej mierze niezrównoważone, i jest to powszechny problem napotykany przy identyfikacji źródeł wycieków. W obecnej pracy zaproponowano więc trójwymiarową (3D) metodę powtórnego próbkowania z wykorzy-staniem próbek wód z kategorii zdarzeń rzadkich, tak by uzyskać zrównoważony zbiór danych. W oparciu o wirtualne punkty na trójwymiarowej siatce, wykorzystano trójwymiarową metodęśredniej ważonej odległością (Inverse Distance Weighing – IDW) do interpolacji stężenia jonów w wodach gruntowych w wirtualnych próbkach wody, w celu nadpróbkowania dla kategorii zdarzeń rzadkich. Studium przypadku kopalni węgla Gubei pokazuje, że metoda poprawia dokładność dopasowania modelu w oparciu o kryterium Bayesowskie o 5.25% (z 85.26% na 90.96 %). W szczególności, dokładność rozróżniania i dyskryminacji próbek należących do kategorii zdarzeń rzadkich wzrasta od 0% do 83.33%, co oznacza bardzo znaczna poprawę. Ponadto, wartość współczynnika Kappa wzrasta o 19.92%, od 52.26 % do 72.19%, tym samym podnosząc poziom zgodności metody z poziomu ogólnego na „znaczący”. Prowadzone przez nas badania mają poważne znaczenie z punktu widzenia udoskonalenia teorii leżących u podstaw metod i technik zapobiegania i kontroli wycieków wód kopalnianych.
Źródło:
Archives of Mining Sciences; 2019, 64, 2; 321-333
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Time-Series Analysis for Predicting Defects in Continuous Steel Casting Process
Autorzy:
Rodziewicz, A.
Perzyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/380643.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
information technology
foundry industry
quality management
continuous steel casting
time series analysis
naïve Bayesian classifier
technologia informatyczna
przemysł odlewniczy
zarządzanie jakością
ciągłe odlewanie stali
analiza szeregów czasowych
naiwny klasyfikator Bayesa
Opis:
The purpose of this paper was testing suitability of the time-series analysis for quality control of the continuous steel casting process in production conditions. The analysis was carried out on industrial data collected in one of Polish steel plants. The production data concerned defective fractions of billets obtained in the process. The procedure of the industrial data preparation is presented. The computations for the time-series analysis were carried out in two ways, both using the authors’ own software. The first one, applied to the real numbers type of the data has a wide range of capabilities, including not only prediction of the future values but also detection of important periodicity in data. In the second approach the data were assumed in a binary (categorical) form, i.e. the every heat(melt) was labeled as ‘Good’ or ‘Defective’. The naïve Bayesian classifier was used for predicting the successive values. The most interesting results of the analysis include good prediction accuracies obtained by both methodologies, the crucial influence of the last preceding point on the predicted result for the real data time-series analysis as well as obtaining an information about the type of misclassification for binary data. The possibility of prediction of the future values can be used by engineering or operational staff with an expert knowledge to decrease fraction of defective products by taking appropriate action when the forthcoming period is identified as critical.
Źródło:
Archives of Foundry Engineering; 2016, 16, 4; 125-130
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies