Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fast fourier transform" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Experimental Comparative Investigations to Evaluate Cavitation Conditions within a Centrifugal Pump Based on Vibration and Acoustic Analyses Techniques
Autorzy:
Al-Obaidi, Ahmed Ramadhan
Powiązania:
https://bibliotekanauki.pl/articles/177056.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
centrifugal pump
cavitation
Fast Fourier Transform
vibration
acoustic
normalise features
Opis:
Cavitation is an essential problem that occurs in all kinds of pumps. This cavitation contributes highly towards the deterioration in the performance of the pump. In industrial applications, it is very vital to detect and decrease the effect of the cavitation in pumps. Using different techniques to analysis and diagnose cavitation leads to increase in the reliability of cavitation detection. The use of various techniques such as vibration and acoustic analyses can provide a more robust detection of cavitation within the pump. In this work therefore, focus is put on detecting and diagnosing the cavitation phenomenon within a centrifugal pump using vibration and acoustic techniques. The results obtained from vibration and acoustic signals in time and frequency domains were analysed in order to achieve better understanding regarding detection of cavitation within a pump. The effect of different operating conditions related to the cavitation was investigated in this work using different statistical features in time domain analysis (TDA). Moreover, Fast Fourier Transform (FFT) technique for frequency domain analysis (FDA) was also applied. Furthermore, the comparison and evaluation system among different techniques to find an adequate technique incorporating for accuracy and to increase the reliability of detection and diagnosing different levels of cavitation within a centrifugal pump were also investigated.
Źródło:
Archives of Acoustics; 2020, 45, 3; 541-556
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
VMD and CNN-Based Classification Model for Infrasound Signal
Autorzy:
Lu, Quanbo
Li, Mei
Powiązania:
https://bibliotekanauki.pl/articles/31339812.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
infrasound signal
variational mode decomposition
convolutional neural network
Fast Fourier Transform
Opis:
Infrasound signal classification is vital in geological hazard monitoring systems. The traditional classification approach extracts the features and classifies the infrasound events. However, due to the manual feature extraction, its classification performance is not satisfactory. To deal with this problem, this paper presents a classification model based on variational mode decomposition (VMD) and convolutional neural network (CNN). Firstly, the infrasound signal is processed by VMD to eliminate the noise. Then fast Fourier transform (FFT) is applied to convert the reconstructed signal into a frequency domain image. Finally, a CNN model is established to automatically extract the features and classify the infrasound signals. The experimental results show that the classification accuracy of the proposed classification model is higher than the other model by nearly 5%. Therefore, the proposed approach has excellent robustness under noisy environments and huge potential in geophysical monitoring.
Źródło:
Archives of Acoustics; 2023, 48, 3; 403-412
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Infrasound Signal Classification Based on ICA and SVM
Autorzy:
Lu, Quanbo
Wang, Meng
Li, Mei
Powiązania:
https://bibliotekanauki.pl/articles/31339863.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
independent component analysis
fast Fourier transform
support vector machine
infrasound signal
Opis:
A diagnostic technique based on independent component analysis (ICA), fast Fourier transform (FFT), and support vector machine (SVM) is suggested for effectively extracting signal features in infrasound signal monitoring. Firstly, ICA is proposed to separate the source signals of mixed infrasound sources. Secondly, FFT is used to obtain the feature vectors of infrasound signals. Finally, SVM is used to classify the extracted feature vectors. The approach integrates the advantages of ICA in signal separation and FFT to extract the feature vectors. An experiment is conducted to verify the benefits of the proposed approach. The experiment results demonstrate that the classification accuracy is above 98.52% and the run time is only 2.1 seconds. Therefore, the proposed strategy is beneficial in enhancing geophysical monitoring performance.
Źródło:
Archives of Acoustics; 2023, 48, 3; 191-199
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault Analysis of Worm Gear Box Using Symlets Wavelet
Autorzy:
Thamba, Narendiranath Babu
Thatikonda Venkata, Kiran Kamesh
Nutakki, Sathvik
Duraiswamy, Rama Prabha
Mohammed, Noor
Wahab, Razia Sultana
Mangalaraja, Ramalinga Viswanathan
Manivannan, Ajay Vannan
Powiązania:
https://bibliotekanauki.pl/articles/177633.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
worm gear box
FFT
Fast Fourier Transform
symlet wavelets
artificial neural Network
Opis:
This research highlights the vibration analysis on worm gears at various conditions of oil using the experimental set up. An experimental rig was developed to facilitate the collection of the vibration signals which consisted of a worm gear box coupled to an AC motor. The four faults were induced in the gear box and the vibration data were collected under full, half and quarter oil conditions. An accelerometer was used to collect the signals and for further analysis of the vibration signals, MATLAB software was used to process the data. Symlet wavelet transform was applied to the raw FFT to compare the features of the data. ANN was implemented to classify various faults and the accuracy is 93.3%.
Źródło:
Archives of Acoustics; 2020, 45, 3; 521-540
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies