Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "bioinspired" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
QIBMRMN: Design of a Q-Learning based Iterative sleep-scheduling & hybrid Bioinspired Multipath Routing model for Multimedia Networks
Autorzy:
Doorwar, Minaxi
Malathi, P
Powiązania:
https://bibliotekanauki.pl/articles/27311958.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
multimedia
network
Q-learning
GWO
GA
Adhoc
QoS
iterative
process
Opis:
Multimedia networks utilize low-power scalar nodes to modify wakeup cycles of high-performance multimedia nodes, which assists in optimizing the power-toperformance ratios. A wide variety of machine learning models are proposed by researchers to perform this task, and most of them are either highly complex, or showcase low-levels of efficiency when applied to large-scale networks. To overcome these issues, this text proposes design of a Q-learning based iterative sleep-scheduling and fuses these schedules with an efficient hybrid bioinspired multipath routing model for largescale multimedia network sets. The proposed model initially uses an iterative Q-Learning technique that analyzes energy consumption patterns of nodes, and incrementally modifies their sleep schedules. These sleep schedules are used by scalar nodes to efficiently wakeup multimedia nodes during adhoc communication requests. These communication requests are processed by a combination of Grey Wolf Optimizer (GWO) & Genetic Algorithm (GA) models, which assist in the identification of optimal paths. These paths are estimated via combined analysis of temporal throughput & packet delivery performance, with node-to-node distance & residual energy metrics. The GWO Model uses instantaneous node & network parameters, while the GA Model analyzes temporal metrics in order to identify optimal routing paths. Both these path sets are fused together via the Q-Learning mechanism, which assists in Iterative Adhoc Path Correction (IAPC), thereby improving the energy efficiency, while reducing communication delay via multipath analysis. Due to a fusion of these models, the proposed Q-Learning based Iterative sleep-scheduling & hybrid Bioinspired Multipath Routing model for Multimedia Networks (QIBMRMN) is able to reduce communication delay by 2.6%, reduce energy consumed during these communications by 14.0%, while improving throughput by 19.6% & packet delivery performance by 8.3% when compared with standard multimedia routing techniques.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 4; 776--784
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A bioinspired optimization strategy: to minimize the travel segment of the nozzle to accelerate the fused deposition modeling process
Autorzy:
Sridhar, Sundarraj
Aditya, K.
Venkatraman, Ramamoorthi
Venkatesan, M.
Powiązania:
https://bibliotekanauki.pl/articles/27311459.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
additive manufacturing
fused deposition modeling
extruder path
ant colony optimization
build time
produkcja dodatkowa
modelowanie osadzania stopionego
ścieżka wytłaczarki
optymalizacja kolonii mrówek
czas budowy
Opis:
The fused deposition modeling process of digital printing uses a layer-by-layer approach to form a three-dimensional structure. Digital printing takes more time to fabricate a 3D model, and the speed varies depending on the type of 3D printer, material, geometric complexity, and process parameters. A shorter path for the extruder can speed up the printing process. However, the time taken for the extruder during printing (deposition) cannot be reduced, but the time taken for the extruder travel (idle move) can be reduced. In this study, the idle travel of the nozzle is optimized using a bioinspired technique called "ant colony optimization" (ACO) by reducing the travel transitions. The ACO algorithm determines the shortest path of the nozzle to reduce travel and generates the tool paths as G-codes. The proposed method’s G-code is implemented and compared with the G-code generated by the commercial slicer, Cura, in terms of build time. Experiments corroborate this finding: the G-code generated by the ACO algorithm accelerates the FDM process by reducing the travel movements of the nozzle, hence reducing the part build time (printing time) and increasing the strength of the printed object.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 4; art. no. e146236
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies