Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "waste printed circuit boards" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Recent sustainable trends for e-waste bioleaching
Autorzy:
Al Sultan, Mohammed Sami
Benli, Birgül
Powiązania:
https://bibliotekanauki.pl/articles/24085614.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
bioleaching
e-waste
sustainable mining
used electronic components
waste printed circuit boards
recovery metal
Opis:
For the past few decades, the electronic and electrical waste have been accumulating and piling on our lands and aside from posing some serious threat on our environment and our health. And with the technological advance and the rapid growing electronic demand and production there is the risk of accumulating even more unused valuable usable materials in our waste land-fields. Up to 2030, EU is forecasting about 74 million tons of e-waste, including washing machines, tablet computers, toasters, and cell phones. In 2022, more than 5.3 billion mobile phones were wasted whereas Li, Mn, Cu, Ni, and various rare-earth elements (like Nd, Eu and Tb, etc.) as well as graphite are actually found in the contents of many metal parts from wiring, batteries to their components. The main purpose aside from an environmental aspect is reserving the mineral used in this waste, as many of the crucial materials have a supply risk heavily depending on import. For instance, many of these rare earth elements (REE) are sourced from China; these REEs are used in many electronics that range from consumer products to industrial-use machines. This study is to review one of the desired methods that is via using bio-techniques to dissolve and recover as much as possible from main e-waste sources such as PCBs, spend batteries and LCD/LED panels. Microorganisms that are used for bioleaching process and their metal recovery aspects were compared in the second part. Future perspectives were finally added considering significant techno-economic environmental and social impacts.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 5; art. no. 167375
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Copper recovery from waste printed circuit boards and the correlation of Cu, Pb, Zn by ionic liquid
Autorzy:
Li, F.
Chen, M.
Powiązania:
https://bibliotekanauki.pl/articles/208289.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
electronic waste
printed circuit boards
heavy metals
waste disposal
metale ciężkie
odpady elektroniczne
odpad płytek drukowanych
miedź
Opis:
Waste printed circuit boards (WPCBs) contain not only harmful materials but also many valuable resources, especially metals, which attracts more and more attention from the public. In this study, a sulfonic acid functionalized ionic liquid ([BSO3HPy]OTf) was used to recycle copper from WPCBs. Zinc and lead, represented as typical heavy metals, were chosen to study the leaching behavior and their relation to copper. Five factors such as particle size, ionic liquid (IL) concentration, H2O dose, solid to IL ratio and temperature were investigated in detail. The results showed that copper leaching rate was high, up to 99.77%, and zinc leaching rate reached the highest value of 74.88% under the optimum conditions. Lead cannot be leached effectively and the leaching rate was mostly low than 10%, which indirectly indicated that [BSO3HPy]OTf has a good selectivity to lead. Besides, the interaction of copper, lead and zinc was characterized macroscopically by means of statistical methods. The Spearman correlation analysis showed that copper and zinc had a highly positive correlation. Lead had little relation to copper, which to some extent indicated that the effect of zinc on copper leaching behavior was bigger than that of lead.
Źródło:
Environment Protection Engineering; 2017, 43, 4; 55-66
0324-8828
Pojawia się w:
Environment Protection Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Recycling of non-metallic powder from printed circuit board waste as a filler material in a fiber reinforced polymer
Autorzy:
Kanchanapiya, P.
Pinyo, W.
Jareemit, S.
Kwonpongsagoon, S.
Powiązania:
https://bibliotekanauki.pl/articles/207195.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
electronic waste
printed circuit boards
recycling
nonmetallic powder
filler material
fiber reinforced polymer
odpady elektroniczne
odpad płytek drukowanych
wykorzystanie odpadów
proszek niemetaliczny
recykling
materiał wypełniający
polimer wzmocniony włóknami
Opis:
Rapid growth in the electricity and electronics industry in Thailand has resulted in numerous problems with electrical waste management. Printed circuit board (PCB) components contain copper in an amount of approximately 10 wt. % and approximately 90 wt. % of non-conductive substrate made from fiberglass resin. In the recycling process, after copper is physically separated from PCB, only nonmetallic powder (NMP) will be left; that needs to be properly disposed of and managed. Therefore, this study is a proposal of suitable choices for NMP management. The results showed that NMP can be disposed in hazardous waste landfill. Furthermore, NMP can be recycled as a component in fiber- -reinforced polymer (FRP) of the following composition: coarse NMP 25%, fine NMP 25%, polyester 38.8%, hardener (Butanox type) 0.6%, catalyst (cobalt type) 0.6%, styrene monomer 10%. This FRP mixed with NMP can be properly processed into an artificial wall tile product in terms of mechanical properties, manufacturing processes and conditions of use.
Źródło:
Environment Protection Engineering; 2015, 41, 4; 151-166
0324-8828
Pojawia się w:
Environment Protection Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies