Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "quinoline adsorption" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Removal of quinoline from aqueous solutions by lignite, coking coal and anthracite. Adsorption isotherms and thermodynamics
Autorzy:
Xu, H.
Huagn, G.
Li, X.
Gao, L.
Wang, Y.
Powiązania:
https://bibliotekanauki.pl/articles/110016.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quinoline adsorption
coking coal
adsorption isotherms
thermodynamics
Opis:
Based on the concept of circular economy, a novel method of industrial organic wastewater treatment by using adsorption on coal is introduced. Coal is used to adsorb organic pollutants from coking wastewaters. After adsorption, the coal would be used for its original purpose, its value is not reduced and the pollutant is thus recycled. Through systemic circulation of coking wastewater zero emissions can be achieved. Lignite, coking coal and anthracite were used as adsorbents in batch experiments. The quinoline removal efficiency of coal adsorption was investigated. The coking coal and anthracite exhibited properties well-suited for adsorption onto both adsorbents. The experimental data were fitted to Langmuir and Freundlich isotherms as well as Temkin, Redlich–Peterson (R-P) and Dubinin-Radushkevich (D-R) models. Both Freundlich Isotherm and D-R model provided reasonable models of the adsorption process. The thermodynamic parameters of quinoline adsorption on coking coal were calculated. The thermodynamic parameters indicated that the adsorption process is exothermic and is a physical adsorption. The △S° value indicated that the adsorption entropy decreased because the adsorbate molecule was under restrictions after it adsorption on the coal surface. The coal adsorption method for removing refractory organic pollutants is a great hope for achieving zero emission waste water for a coking plant.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 1; 214-227
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Removal of quinoline using various particle sizes anthracite: adsorption kinetics and adsorption isotherms
Autorzy:
Xu, Hongxiang
Sun, Xianfeng
Yu, Yuexian
Liu, Guowei
Ma, Liqiang
Huang, Gen
Powiązania:
https://bibliotekanauki.pl/articles/109567.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
adsorption isotherm
anthracite
particle size
quinoline adsorption kinetics
Opis:
This work provided an adsorption method of the removal of quinoline by using anthracite of various particle sizes. The characteristics of the adsorbents were analyzed by Camsizer XT for particle size analysis, FT-IR for functional groups, X-ray diffusion for mineralogical composition, Brunauer-Emmett-Teller for specific surface area and Barrett-Joyner-Halenda for pore size distribution. The average particle size of AC1-AC4 were 0.0342 mm, 0.1015 mm, 0.2103 mm and 0.3815 mm, respectively. The specific surface of the AC1-AC4 were 3.5 m2·g-1, 1.5 m2·g-1, 0.7 m2·g-1 and 0.1 m2·g-1 respectively. The adsorption capacity present a linear increase with the specific surface area increasing. To reveal the process of the adsorption, the adsorption kinetics and isotherms were performed. The kinetics data were analyzed by pseudo-first-order, pseudo-second-order and intra-particle diffusion equation using linearized correlation coefficient. Pseudo-second-order was found to best represent the kinetics data, which indicated that the adsorption of quinoline onto anthracite belongs to chemisorption. The equilibrium isotherms data were analyzed by Langmuir model and Freundlich model, the results indicated that the Freundlich model fit well for all the adsorption processes, which showed that the adsorption of quinoline onto anthracite belongs to endothermic reaction.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 1; 196-207
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Removal of quinoline from aqueous solutions by lignite, coking coal and anthracite. Adsorption kinetics
Autorzy:
Xu, H.
Wang, Y.
Huagn, G.
Fan, G.
Gao, L.
Li, X.
Powiązania:
https://bibliotekanauki.pl/articles/110664.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quinoline adsorption
coking coal
kinetics
adsorption activation energy
coal adsorption
Opis:
Basing on the concept of circular economy, a novel method of industrial organic wastewater treatment by using adsorption on coal is introduced. Coal is used to adsorb organic pollutants from coking wastewaters. After adsorption, the coal would be used in its original purpose, as its value was not reduced and the pollutant was reused. Through the systemic circulation of coking wastewater zero emissions can be achieved. Lignite, coking coal and anthracite were used as adsorbents in batch experiments. The quinoline removal efficiency of coal adsorption was investigated. Both the coking coal and anthracite exhibited properties well-suited for quinoline adsorption removal. The experimental data were fitted to the pseudo-first- order and pseudo-second-order kinetic equations as well as intraparticle diffusion and Bangham models. An attempt was made to find the rate-limiting step involved in the adsorption processes. Both boundary-layer diffusion and intraparticle diffusion are likely involved in the rate-limiting mechanisms. Effect of pH on coal adsorptions by coking coal was investigated. The process of quinoline adsorption on coal was researched. The coal adsorption method for removing refractory organic pollutants is a great hope for achieving wastewater zero emission for coking plants.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 1; 397-408
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies