Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "floatability" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Insight into the effect of galvanic interactions between sulfide minerals on the floatability and surface characteristics of pyrite
Autorzy:
Yang, Bo
Tong, Xiong
Xie, Xian
Huang, Lingyun
Powiązania:
https://bibliotekanauki.pl/articles/1448232.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
galvanic interaction
floatability
pyrite
sulfide minerals
Opis:
Complex sulfide ores are usually found as a mixture of various sulfide and gangue minerals, and froth flotation is the predominant method for the selective separation of sulfide minerals. Adherence and contact between sulfide minerals are inevitable during froth flotation, and galvanic interactions between sulfide minerals will occur because of differences in rest potentials. However, the effect of these galvanic interactions on the selective flotation of sulfide minerals have been rarely studied. In this work, the effect of the galvanic interaction between pyrite and sphalerite on the flotation behavior and surface characteristics of pyrite was investigated by micro-flotation tests, collector adsorption tests, electrochemical techniques and XPS (X-ray photoelectron spectroscopy) surface analysis. The micro-flotation tests indicated that the floatability of pyrite decreased in the pH range of 4.0 to 9.5 and increased under strongly alkaline pH conditions (pH > 10) due to the galvanic interaction. The collector adsorption results demonstrated that the adsorption capacity of the collector on the pyrite surface was significantly reduced because of the galvanic interaction between pyrite and sphalerite. The electrochemical measurements revealed that the decrease in the oxidation current of xanthates to dixanthogen was responsible for the decreasing adsorption capacity of the collector on the pyrite surface. The XPS results indicated that the formation of the $S_O_3^{2-}$ oxidation product on the pyrite surface decreased at a strongly alkaline pH due to the galvanic interaction. Therefore, pyrite floatability improved at an alkaline pH. These results consistently showed that the galvanic interaction between pyrite and sphalerite had an important influence on the floatability and surface characteristics of pyrite.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 2; 24-33
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flotation behavior of nickel sulfide ore in a cyclonic flotation column
Autorzy:
Deng, L.
Li, G.
Cao, Y.
Ma, Z.
Powiązania:
https://bibliotekanauki.pl/articles/109906.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cyclonic flotation column
floatability
flotation
nickel sulfide ore
Opis:
This study aimed to show the flotation behavior of a nickel sulfide ore in a cyclonic flotation column. The flotation experiments were carried out using a sample of nickel sulfide ore obtained from a mineral processing plant of China. Representative samples collected from the feed, concentrate, tailing, and circulation middling were sieved using a cyclonic particle analyzer to collect different size fractions for analysis. The function of the column cyclonic zone of was evaluated by comparing the quality of tailing and circulation middling. The flotation results showed that the concentrate with Ni grade of 1.78% and recovery of 65.56% was obtained under given test conditions. The content of main sulfide minerals and coarse particles in the circulation middling was higher than that in the tailing. The results indicated that, unlike conventional cyclone classification, separation achieved in the cyclonic zone of the column was not dependent on the particle size and density. Sulfide minerals with good floatability were easily captured by bubbles and moved toward the center of the column, even if these particles were coarser and heavier.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 2; 770-780
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Understanding the difficult selective separation characteristics of high-ash fine coal
Autorzy:
Yang, Zili
Liu, Min
Chang, Guohui
Xia, Yangchao
Li, Ming
Xing, Yaowen
Gui, Xiahui
Powiązania:
https://bibliotekanauki.pl/articles/1845210.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
high-ash fine coal
flotation
rod grinding
floatability
slime coating
Opis:
As the supply of high-quality coals decreases and mechanical coal mining becomes more widespread, the high selective recovery of high-ash fine coal has become a prominent problem in the flotation process. Herein, we discuss the main reasons why the selective separation of high-ash fine coal is difficult. The analysis of high-ash fine coal properties shows that coarse particles (0.25-0.5 mm) account for 22.53% of the total size fraction and that 57.90% of the coal is moderate- or high-density (+1.4 g/cm3) intergrowth. Grinding experiments show that the traditional rod mill has little impact on the liberation of the intergrowth. Instead, its main function is to adjust the particle size composition to ensure that the particle sizes of high-ash fine coal are within the particle size range suitable for flotation. The flotation results show that a clean coal yield of 30.42%, with a 12.46% ash content, is obtained with the optimal flotation parameters through the roughing and cleaning flotation process. However, the flotation results also show that in the separation of high-ash fine coal, it is difficult to obtain clean coal with a high yield and low ash content at the same time. This is mainly due to the similar floatability of moderate-density and low-density coal particles, which allows a large number of moderate-density coal particles to be recovered, and a significant slime coating of clay on the coal’s surface that is generated during the flotation process. The results of this work provide valuable guidance for high-ash fine coal industrial flotation applications.
Źródło:
Physicochemical Problems of Mineral Processing; 2020, 56, 5; 874-883
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Role of ammonium phosphate in improving the physical characteristics of malachite sulfidation flotation
Autorzy:
Ibrahim, Ayman M.
Jia, Xiaodong
Cai, Jinpeng
Su, Chao
Yu, Xingcai
Zheng, Qifang
Peng, Rong
Shen, Peilun
Liu, Dianwen
Powiązania:
https://bibliotekanauki.pl/articles/2200339.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
malachite sulfidation
sample preparation
ammonium phosphate
sodium sulfide
floatability
physical characteristics
Opis:
In this study, ammonium phosphate ((NH4)3PO4) was employed to realize improvement by modifying the physical characteristics of the malachite surface, ensuring sustainable flotation throughout the flotation operations, and enhancing the flotation process to be more stable. Furthermore, various techniques, including X-ray photoelectron spectroscopy, were intensely used to investigate the configuration and physico-chemical surface characteristics through micro-flotation experiments, contact angle and zeta potential measurements, and XRD, ToF-SIMS, EPMA, and FTIR spectrum analyses. The FTIR findings showed that new characteristic peaks of -C(=S)-N.H. groups formed and adsorbed on the surfaces of malachite at 1636 cm-1. The -CH2 groups throughout the flotation process, further promoted the attachment of the CH3 ligand to the Cu2+ ion, and the XPS analysis confirmed this. Consequently, it can be concluded that (NH4)3PO4 played a substantial part in the improved recovery rate, as demonstrated and confirmed by the methods carried out in this study. Thus, it was used to modify the physical properties surface before adding Na2S to efficiently enhance malachite floatability and reduce the loss rate of malachite. Regarding the alterations in the physical characteristics which occurred to the malachite surface, and as a consequence of increasing the recovery results of flotation, the malachite sample treated initially with (NH4)3PO4 exhibited micro flotation results with a considerably greater flotation recovery than malachite treated initially with only Na2S ions.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 1; art. no. 161510
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies