Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "creep" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Effect of Time History on Long-Term Deformation of Gypseous Soils
Autorzy:
Fattah, Mohammed Y.
Al-Shakarchi, Yousif J.
Al-Numani, Huda N.
Powiązania:
https://bibliotekanauki.pl/articles/2172881.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
gypseous soil
creep
collapse
time history
relative density
Opis:
The time-dependent behavior of three gypseous soils was investigated. The soils had gypsum content of 66%, 44%, and 14.8%. The mineralogical and chemical properties of the soils were determined. Two series of tests were performed. In the first, collapsibility characteristics were investigated for a long period (60 days) by conducting single and double oedometer tests. In the second series, the effect of relative density on collapse with time was investigated. The samples were compacted to 40%, 50%, and 60% relative density and then tested. The results of collapse tests showed that the relationship between the strain and logarithm of effective stress has two vertical lines. The first one represents the collapse settlement taking place within 24 h, while the second one represents the long-term collapse. The collapse potential (CP) in both single and double oedometer tests increases when the gypsum content increases from 14.8% to 66% and when the initial void ratio increases. The CP–logarithm of time relationship for soaked samples prepared at different relative densities under 800 kPa indicated that the CP increased with time for the soil sample compacted at 60% relative density and the increase was higher than those compacted at 40% and 50% relative density. The curves started with a straight line and then a concave downward curve was observed with a high strain. For samples compacted at 40% and 50% relative densities, the curves were interrupted by little soil collapses, while the third curve exhibited smooth relation following the collapse.
Źródło:
Studia Geotechnica et Mechanica; 2022, 44, 3; 198--210
0137-6365
2083-831X
Pojawia się w:
Studia Geotechnica et Mechanica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preliminary investigations of creep strain of Neogene clay from Warsaw in drained triaxial tests assisted by computed microtomography
Autorzy:
Kaczmarek, Ł. D.
Dobak, P. J.
Kiełbasiński, K.
Powiązania:
https://bibliotekanauki.pl/articles/178669.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
microstructure
multistage creep tests
strain rate
undisturbed Neogene clay
Opis:
The study concerns soil creep deformation in multistage triaxial stress tests under drained conditions. High resolution X-ray computed microtomography (XμCT) was involved in structure recognition before and after triaxial tests. Undisturbed Neogene clay samples, which are widespread in central Poland, were used in this study. XμCT was used to identify representative sample series and informed the detection and rejection of unreliable ones. Maximum deviatoric stress for in situ stress confining condition was equal 95.1 kPa. This result helped in the design of further multistage investigations. The study identified the rheological strain course, which can be broken down into three characterizations: decreasing creep strain rate, transitional constant creep velocity, and accelerating creep deformation. The study found that due to multistage creep loading, the samples were strengthened. Furthermore, there is a visibly “brittle” character of failure, which may be the consequence of the microstructure transformation as a function of time as well as collapse of voids. Due to the glacial tectonic history of the analyzed samples, the reactivation of microcracks might also serve as an explanation. The number of the various sizes of shear planes after failure is confirmed by XμCT overexposure.
Źródło:
Studia Geotechnica et Mechanica; 2017, 39, 2; 35-49
0137-6365
2083-831X
Pojawia się w:
Studia Geotechnica et Mechanica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling the time-dependent behaviour of soft soils
Autorzy:
Staszewska, Katarzyna
Cudny, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/178172.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
creep
soft soil
normally consolidated soils
elasto-viscoplastic model
Opis:
Time dependence of soft soils has already been thoroughly investigated. The knowledge on creep and relaxation phenomena is generally available in the literature. However, it is still rarely applied in practice. Regarding the organic soils, geotechnical engineers mostly base their calculations on the simple assumptions. Yet, as presented within this article, the rate-dependent behaviour of soft soils is a very special and important feature. It influences both the strength and the stiffness of a soil depending on time. It is, thus, significant to account for time dependence in the geotechnical design when considering the soft soils. This can result in a more robust and economic design of geotechnical structures. Hence, the up-to-date possibilities of regarding creep in practice, which are provided by the existing theories, are reviewed herein. In this article, we first justify the importance of creep effects in practical applications. Next, we present the fundamental theories explaining the time-dependent behaviour of organic soils. Finally, the revision of the existing constitutive models that can be used in numerical simulations involving soft soils is introduced. Both the models that are implemented in the commercial geotechnical software and some more advanced models that take into account further aspects of soft soils behaviour are revised. The assumptions, the basic equations along with the advantages and the drawbacks of the considered models are described.
Źródło:
Studia Geotechnica et Mechanica; 2020, 42, 2; 97-110
0137-6365
2083-831X
Pojawia się w:
Studia Geotechnica et Mechanica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of different material theories used in a FE model of a lumbar segment motion
Autorzy:
Gohari, E.
Nikkhoo, M.
Haghpanahi, M.
Parnianpour, M.
Powiązania:
https://bibliotekanauki.pl/articles/307482.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
creep
dynamic loading
finite element method
lumbar motion segment
poroelastic
viscoelastic
pełzanie
porosprężystość
lepkosprężystość
metoda elementów skończonych
Opis:
In this study, a nonlinear poroelastic model of intervertebral disc as an infrastructure was developed. Moreover, a new element was defined consisting a disc (Viscoelastic Euler Beam Element) and a vertebra (Rigid Link) as a unit element. Using the new element, three different viscoelastic finite element models were prepared for lumbar motion segment (L4/L5). Prolonged loading (short-term and longterm creep) and cyclic loading were applied to the models and the results were compared with results of in vivo tests. Simplification of the models by using the new element leads to reduction of the runtime of the models in dynamic analyses to few minutes without losing the accuracy in the results.
Źródło:
Acta of Bioengineering and Biomechanics; 2013, 15, 2; 33-41
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies