Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Yao, Li" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Effect and mechanism of citric acid on flotation separation of siderite and hematite
Autorzy:
Han, Huili
Yin, Wanzhong
Yao, Jin
Li, Dong
Powiązania:
https://bibliotekanauki.pl/articles/949693.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
siderite
hematite
citric acid
dispersion
flotation
E-DLVO theory
Opis:
Heterocoagulation can occur between fine siderite and hematite particles, which would result in the low efficiency of their separation during the flotation process. To date, there have been no mature methods to increase their separation efficiency. In this paper, citric acid was used as a regulator to enhance the slurry dispersion efficiency. Micro-flotation, scanning electron microscopy (SEM) analysis, settling tests, particle size measurements, zeta potential measurements and E-DLVO theoretical calculations were conducted in the investigations. A maximum recovery difference (53.98%) between siderite and hematite in their mixtures flotation was obtained. Settling tests confirmed that citric acid contributed to improving the dispersion degree of the slurry. SEM analysis indicated that citric acid could clean the surface of particles and weaken the coagulation between siderite and hematite, which were in line with the results of particle size measurements. The zeta potential measurements and Extended-Derjaguin-Landau-Verwey-Overbeek (E-DLVO) theoretical calculations indicated that the citric acid could adsorb on the siderite and hematite surfaces and decreased the surface charge, resulting in a visible increase of the repulsion energy between siderite and hematite particles. Therefore, citric acid can be applied to remove the easily-ground carbonate minerals first to improve the flotation performance of hematite in the separation process of carbonate-containing iron ores.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 1; 311-323
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on the X-ray wavelength division multiplexing technology for blackout region communication
Autorzy:
Li, Yao
Su, Tong
Sheng, Lizhi
Xu, Neng
Zhao, Baosheng
Powiązania:
https://bibliotekanauki.pl/articles/1835966.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
X-ray communication
plasma sheath
wavelength division multiplexing
Opis:
After the concept of X-ray communication was proposed, its application in complex electromagnetic environment has received more attention, such as data transmission in re-enter special electro-magnetic condition. In this article, a new type of X-ray source was introduced firstly, which was expected to generate multiple characteristic lines and achieve wavelength division multiplexing technology in X-ray band. Then an experimental platform was built for analyzing transmission characteristics of X-ray photon in various plasma media. Finally, the calculation model for a link power equation was given. Experiment results show that transmittance of 8–18 keV X-ray signal is relatively stable, atomic numbers from 29 to 42 are the most suitable materials for wavelength division multiplexing, the X-ray communication system is expected to realize about 200 kbps data transmission rate in adjacent space.
Źródło:
Optica Applicata; 2020, 50, 4; 619-632
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Counterion effects on the alkali dissolution mechanism of quartz
Autorzy:
Yao, Yu-yun
Tang, Yun
Yang, Yong
Li, Guo-hui
Wu, Bo
Dai, Wen-zhi
Powiązania:
https://bibliotekanauki.pl/articles/2200337.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
quartz
counterion
quantum chemistry
hydrolysis
mechanism
Opis:
In gold ore, quartz plays an important role in mineral formation by acting as the follower. Understanding counterion release, transport, and deposition in alkali solution is a prerequisite for evaluating the potential role of gold separate from quartz deposits in pretreatment. In this work, the aggregation, retention, and release of counterion in alkali solution media were investigated by kinetic research and pure mineral experiments, the correlation and mechanism of these processes were revealed by combining geochemical theory, interaction energy calculation, and quantum chemistry. The results showed that the retention and release of counterion were closely related to the dissolution and corrosion rate of quartz. The NH4+ and Fe2+ with higher mineral affinity reduced the quartz stability, and the dispersion stability and mobility of the quartz were greatly improved by an alkaline substance due to the enhancement of steric hindrance effects. Quantum chemical calculation results show that ammonium ion promotes the dissolution of quartz stronger than ferrous ion, which is mainly reflected in reducing the activation energy required for the formation of transition state (TS1), which can be verified by kinetic calculation. These findings provide essential insight into the extraction of gold coated by quartz as well as a vital reference for the experiment of gold-loaded quartz leaching in mineral processing.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 1; art. no. 160038
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies