Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Tang, Y." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Pre-concentration of vanadium-bearing mica from stone coal by roasting-flotation
Autorzy:
Tang, J.
Zhang, Y.
Bao, S.
Liu, C.
Powiązania:
https://bibliotekanauki.pl/articles/109373.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
roasting
flotation
vanadium bearing mica
stone coal
Opis:
In China, stone coal is an important source of vanadium. The use of roasting–floatation for the pre-concentration of vanadium bearing mica from vanadium bearing stone coal was investigated based on its mineralogical characteristics. The results showed that the vanadium occurred in mica minerals and the main gangue minerals were coal, calcite, and quartz. The pre-concentration process comprises three key steps: roasting, desliming, and flotation. The coal was completely removed by roasting at 700 °C for an hour. Slime was concentrated and the subsequent flotation pulp was improved by desliming. Calcite was removed by reverse flotation and mica was concentrated by positive floatation. During the process, the grade of V2O5 was increased from 0.71% to 1.14%, and 46.18% of the tailings were rejected. The leaching rate of vanadium was increased from 30.49% of raw ore to 69.15% of the concentrate which was an increase of about 40% at the same leaching process. This technique may promote the efficient utilization of stone coal resources.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 1; 402-412
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Knitted silk mesh-like scaffold incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with mesenchymal stem cells for repairing Achilles tendon in rabbits
Autorzy:
Tang, L.
Yang, Y.
Li, Y.
Yang, G.
Luo, T.
Xue, Y.
Zhang, W.
Powiązania:
https://bibliotekanauki.pl/articles/306523.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
ścięgno Achillesa
kolagen
komórki macierzyste
szpik kostny
Bombyx mori silk
regenerated silk fibroin
collagen I
bone marrow-derived mesenchymal stem cells
weft-knit
Achilles tendon action
Opis:
A scaffold knit with natural sericin-free silk fibroin fiber possesses desirable mechanical properties, biocompatibility, ease of fabrication, and slow degradability. However, regenerated silk fibroin degrades faster than natural silk. In this study, natural silk fibroin fiber mesh-like scaffolds were prepared by a weft-knitting method and the pores were filled with sponge-like regenerated silk fibroin-collagen I. The microporous sponge and mesh-like scaffolds were fused to achieve gradient degradation of the scaffolds, and rabbit bone marrow mesenchymal stem cells (BMSCs) were seeded onto the scaffolds to form scaffold–BMSCs composites. The composites were implanted into gap defects made in the rabbit Achilles tendon. Twenty weeks after implantation, histological observation showed that tendon-like tissue had formed, collagen I mRNA was expressed, abundant collagen was generated, and that there was no obvious degradation of silk. The maximum load of the neo-Achilles tendon was 62.14% that of the natural Achilles tendon. These outcomes were superior to those obtained in the group implanted with a scaffold without BMSCs. These findings suggest the feasibility of constructing tissue-engineered tendons using weft-knitted silk scaffolds incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with BMSCs, and show potential of the scaffold–BMSCs composites to repair Achilles tendon defects.
Źródło:
Acta of Bioengineering and Biomechanics; 2018, 20, 3; 77-87
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of polyacrylic acid on the surface properties of calcite and fluorite aiming at their selective flotation
Autorzy:
Zhang, C.
Gao, Z.
Hu, Y.
Sun, W.
Tang, H.
Yin, Z.
He, J.
Guan, Q.
Zhu, Y.
Powiązania:
https://bibliotekanauki.pl/articles/110577.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
calcite
fluorite
selective flotation
polyacrylic acid
Opis:
In this study, the polyacrylic acid (PAA) was studied as a selective depressant for calcite in the selective flotation of fluorite and calcite, and the implications of this process for the separation of fluorite ore were studied using micro-flotation tests, and the results were analyzed with Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses. The flotation tests indicated that the preferential adsorption of PAA onto calcite rather than sodium oleate (NaOl) could selectively depress the flotation of calcite, allowing its separation from fluorite at pH 7. The zeta potential of calcite became more negative with the addition of PAA rather than with NaOl. However, the characteristic features of PAA adsorption were not observed for fluorite, suggesting that NaOl preferentially adsorbed on the surface of fluorite, or that PAA could be replaced by NaOl on the fluorite surface. FT-IR and XPS analysis were utilized to obtain a better understanding of the mechanism by which PAA was more strongly adsorbed on the calcite surface than NaOl. This was revealed to occur through chemical bonding between the carboxyl group of PAA and the hydroxyl groups of the Ca species on the calcite surface, modifying the structure of the adsorbed layer. A possible adsorption mechanism, along with a postulated adsorption mode for the surface interaction between PAA and calcite, is proposed.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 868-877
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies