Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Cheng, J.-D." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Effect of oxidation on the wetting of coal surfaces by water: experimental and molecular dynamics simulation studies
Autorzy:
Li, E.
Lu, Y.
Cheng, F.
Wang, X.
Miller, J. D.
Powiązania:
https://bibliotekanauki.pl/articles/109792.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
wettability
oxidation
molecular dynamics simulation
hydrogen bonding
contact angles
coal surfaces
Opis:
The wettability of coal surfaces by water continues to be one of the key factors which determines the success of coal flotation. Consequently, oxidation of coal surfaces is a fundamental issue of interest. In this work, the effect of oxidation on the wetting of coal surfaces and the interaction between water molecules and oxygen-containing sites at the coal surface was investigated based on advancing/receding contact angle measurements and molecular dynamics simulations. For the simulation studies, a flat coal surface was constructed with the assistance of the molecular repulsion between graphite surfaces and the assembly of Wiser coal molecules. Our results indicated that the simulated advancing and receding contact angles were very similar, and both of them decreased, as expected, with an increase of hydroxyl sites at the coal surface. The good agreement between the simulated advancing/receding contact angles and the experimental receding contact angle values suggested that the configuration of the systems and the set of parameters for the simulation were appropriate. The spreading of water is mainly due to the hydrogen bonds formed between the interfacial water molecules and the hydroxyl sites at the coal surface. The hydroxyl groups show stronger hydration capacity than other oxygen-containing groups according to the calculated hydrogen bonds and interaction energies.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 4; 1039-1051
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the influence of the transducer and its coupling layer on round window stimulation
Autorzy:
Liu, H.
Xu, D.
Yang, J.
Yang, S.
Cheng, G.
Huang, X.
Powiązania:
https://bibliotekanauki.pl/articles/306655.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
słuch
stymulacja
przetwornik
RW
FEM
implantable middle ear hearing device
round window stimulation
transducer
coupling layer
finite element analysis
Opis:
Purpose: In this work, a finite element study is proposed to evaluate the effects of the transducer and its coupling layer on the performance of round window (RW) stimulation. Methods: Based on a set of micro-computer tomography images of a healthy adult’s right ear and reverse engineering technique, a coupled finite-element model of the human ear and the transducer was constructed and verified. Then, the effect of the cross-section of the transducer, the elastic modulus of the coupling layer, the mass of the transducer, and the preload of the transducer were studied. Results: The increase of the transducer’s cross-section area deteriorates the RW stimulation, especially at the lower frequencies. This adverse effect of the cross-section area’s increase of the transducer can be reduced by adding a coupling layer between the transducer and the RW. However, the coupling layer’s improvement on the RW stimulation is reduced with the increase of its elastic modulus. Moreover, the mass loading of the transducer decreases the RW stimulation’s performance mainly at higher frequencies and applying a static preload on the transducer enhances its hearing compensating performance at higher frequencies. Conclusions: The influence of the transducer’s mass, the mass of the transducer, the applied static preload and the properties of the coupling layer must be taken into account in the design of the RW stimulation type implantable middle ear hearing device.
Źródło:
Acta of Bioengineering and Biomechanics; 2017, 19, 2; 103-111
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nano-silica reinforced hybrid light-diffusing films with enhanced mechanical and thermal properties
Autorzy:
Sun, X
Li, N.
Hang, J
Jin, L.
Shi, L
Cheng, Z.
Shang, D
Powiązania:
https://bibliotekanauki.pl/articles/175043.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
optical materials and properties
nanocomposites
light-diffusing films
sol-gel preparation
nanoparticles
Opis:
Ultraviolet-curable hybrid light-diffusing films with good optical, mechanical and thermal properties were prepared by involving vinyl-silane-modified nano-silica into light-diffusing films. The light-diffusing films were two-phase materials consisting of UV-curable matrix and light-diffusing agent. The effect of three different light-diffusing agents, viz. inorganic layered particle (CaCO3), spherical acrylic resin (MR-7HG) and organosilicone resin (KMP-590) and their contents, on the optical properties of light-diffusing films was studied. The results showed the light-diffusing film exhibited good optical properties (the transmittance was 90.7% and the haze was 95.5%) when KMP-590 was a light-diffusing agent and its content was 25%. It was because that KMP-590 showed good transparency, good dispersion in the UV-curable matrix and the greater difference in refractive index with UV-curable matrix and polycarbonate substrate. Furthermore, the effect of nano-silica on the optical, mechanical and thermal properties of the hybrid light-diffusing films was investigated. Compared to that of the light-diffusing films without nano-silica, the haze of the hybrid light-diffusing films containing nano-silica was lightly enhanced to above 98%, while their transmittance basically remained unchanged at a high value (above 89%). Additionally, scratch and abrasion resistance of the hybrid films were obviously improved by nano-silica especially with the particle size of 10–15 nm. Furthermore, the mechanical property and thermal stability of the hybrid films were improved as the content of nano-silica with the particle size of 10–15 nm increased. The enhanced mechanical property and thermal stability of the films could be attributed to the dense structure induced by the increase in network density with the addition of vinyl-silane-modified nano-silica.
Źródło:
Optica Applicata; 2015, 45, 3; 393-404
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies