Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Outliers" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Attenuation matrix in robust, free adjustment
Autorzy:
Duchnowski, R.
Wiśniewski, Z.
Powiązania:
https://bibliotekanauki.pl/articles/225859.pdf
Data publikacji:
2006
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
free adjustment
robustness
outliers
Opis:
Equivalent weight matrix Px plays a major role in robust, free adjustment. It is contained in the optimization criterion P(dx) = dtxPxdx where dx is an increment vector to approximate coordinates of all network points. Assuming, that Px = px T(dx ), where Px is a priori weight matrix, the paper presents the way how to calculate an attenuation matrix T(dx)( dx is a standardized increment vector). Special attention is paid to the way of increment standardization and to computation of an increment variance matrix.
Źródło:
Reports on Geodesy; 2006, z. 2/77; 299-305
0867-3179
Pojawia się w:
Reports on Geodesy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of robust estimators for leveling networks in Monte Carlo simulations
Autorzy:
Pokarowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/106789.pdf
Data publikacji:
2016
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
leveling network
robust estimation
outliers
gross error
internal reliability index
sieć niwelacyjna
estymacja
elementy odstające
błąd całkowity
wewnętrzny wskaźnik niezawodności
Opis:
We compared the method of least squares (LS), Pope’s iterative data snooping (IDS) and Huber’s M-estimator (HU) in realistic leveling networks, for which the heights or the vertical displacements of points are known. The study was conducted using the Monte Carlo simulation, in which one repeatedly generates sets of observations related to the measurement data, then calculates values of the estimators and, finally, assesses it with respect to the real coordinates. To simulate outliers we used popular mixture models with two or more normal distributions. It is shown that for small, strong networks robust methods IDS and HU are more accurate than LS, but for large, weak networks occurring in practice there is no significant difference between the considered methods in the accuracy of the solution.
Źródło:
Reports on Geodesy and Geoinformatics; 2016, 101; 70-81
2391-8365
2391-8152
Pojawia się w:
Reports on Geodesy and Geoinformatics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies