Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bezzałogowy Statek Powietrzny" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Determining of correlation relationship between roll, pitch, and yaw for UAVs
Autorzy:
Hlotov, Volodymyr
Hunina, Alla
Yurkiv, Mariana
Siejka, Zbigniew
Powiązania:
https://bibliotekanauki.pl/articles/106717.pdf
Data publikacji:
2019
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
unmanned aerial vehicle
correlation
roll
pitch
yaw
regression equation
bezzałogowy statek powietrzny
korelacja
ślizg
kąt natarcia
pochylenie
równanie regresji
Opis:
Currently, UAVs are intensively being introduced into topographic-photogrammetric production for topographic digital aerial photography and laser scanning. These technologies have a number of advantages: they don’t require specially prepared platforms and launchers, they are relatively inexpensive unlike large aircrafts, and they are safe. However, there are still many unsolved problems for ultralight UAVs, especially when the aerial photography is made. As you know, the requirements for the implementation of the aerial survey process are quite stringent, first of all, for horizontal flight: the angles of inclination must be within 3–5 degrees, since exceeding these tolerances significantly affects the accuracy for determining the spatial coordinates of objects. Therefore, there was an idea to conduct researches of dependences between the pitch α, roll ω and yaw κ. For this purpose, 100 images obtained from aircraft-type UAV ‘Arrow’ developed and created by specialists from Lviv Polytechnic National University and ‘Abris’ were used. As a result of the study, the multiple correlation coefficient and the parameters of the linear regression equation for the angular elements of the exterior orientation of digital images were calculated. In addition, statistical quality evaluations for the obtained regression model were carried out. Analysis of the received data allows to assert that angular elements of exterior orientation are correlated with each other. Therefore, in the further imaging materials, processing it becomes possible to make compensation of this fact and to improve calculation accuracy of spatial coordinates of points.
Źródło:
Reports on Geodesy and Geoinformatics; 2019, 107; 13-18
2391-8365
2391-8152
Pojawia się w:
Reports on Geodesy and Geoinformatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of technical measures and software in constructing photorealistic 3D models of historical building using ground-based and aerial (UAV) digital images
Autorzy:
Zarnowski, A.
Banaszek, A.
Banaszek, S.
Powiązania:
https://bibliotekanauki.pl/articles/106863.pdf
Data publikacji:
2015
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
3D modelling
digital image
UAV
Pix4Dmapper
Agisoft PhotoScan
modelowanie 3D
obraz cyfrowy
bezzałogowy statek powietrzny
skanowanie przestrzeni
Opis:
Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition.This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns’ Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.
Źródło:
Reports on Geodesy and Geoinformatics; 2015, 99; 54-63
2391-8365
2391-8152
Pojawia się w:
Reports on Geodesy and Geoinformatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Development of a UAV-based system for the semi-automatic estimation of the volume of earthworks
Autorzy:
Ajayi, Oluibukun G.
Oyeboade, Timothy O.
Samaila-Ija, Hassan A.
Adewale, Taiwo J.
Powiązania:
https://bibliotekanauki.pl/articles/1444927.pdf
Data publikacji:
2020
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
Unmanned Aerial Vehicle
earthworks
stockpile volume estimation
spatial data
Digital Elevation Model
bezzałogowy statek powietrzny
roboty ziemne
dane przestrzenne
cyfrowy model wysokości
Opis:
One of the challenges faced by surveyors in acquisition of accurate spatial data for mining applications is the risk involved in acquiring data in rugged terrains and difficult or inaccessible areas. With the advent of modern technology, accurate geospatial data can now be safely obtained for proper mining documentation periodically. The use of Unmanned Aerial Vehicles (UAVs) for data acquisition in mine surveying has been a viable means of obtaining reliable geospatial data rapidly and efficiently. The main goal of this study is to develop a semi-automatic UAV-based system for the acquisition of spatial data required for the estimation of the volume of earthworks. A DJI Phantom 4 quadcopter was used for the acquisition of image data of the project site, while the images were processed into a Digital Elevation Model (DEM) using Pix4Dmapper v2.0.1, which was then imported into the MATLAB-based system developed for the automatic estimation of the volume of earthworks. The volume obtained from the automated system was thus compared with the volume obtained directly from the Pix4Dmapper software, having specified a contour interval of 1 and an allowable error rate of ±3% as the standard error. While ±1.02% error was observed in the volume estimated using the Pix4Dmapper, the developed automated system yielded an estimated precision of ±0.81% in its volume estimation, which proves to be more robust for automatic volume estimation in terms of accuracy and precision.
Źródło:
Reports on Geodesy and Geoinformatics; 2020, 110; 21-28
2391-8365
2391-8152
Pojawia się w:
Reports on Geodesy and Geoinformatics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Accuracy investigation of creating orthophotomaps based on images obtained by applying Trimble-UX5 UAV
Autorzy:
Hlotov, V.
Hunina, A.
Siejka, Z.
Powiązania:
https://bibliotekanauki.pl/articles/106820.pdf
Data publikacji:
2017
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
unmanned aerial vehicle
aerial survey
digital camera
orthophotomap
planned altitude reference
bezzałogowy statek powietrzny
pomiary lotnicze
aparat cyfrowy
ortofotomapa
planowana wysokość odniesienia
Opis:
The main purpose of this work is to confirm the possibility of making large-scale orthophotomaps applying unmanned aerial vehicle (UAV) Trimble-UX5. A planned altitude reference of the studying territory was carried out before to the aerial surveying. The studying territory has been marked with distinctive checkpoints in the form of triangles (0.5 × 0.5 × 0.2 m). The checkpoints used to precise the accuracy of orthophotomap have been marked with similar triangles. To determine marked reference point coordinates and check-points method of GNSS in real-time kinematics (RTK) measuring has been applied. Projecting of aerial surveying has been done with the help of installed Trimble Access Aerial Imaging, having been used to run out the UX5. Aerial survey out of the Trimble UX5 UAV has been done with the help of the digital camera SONY NEX-5R from 200m and 300 m altitude. These aerial surveying data have been calculated applying special photogrammetric software Pix 4D. The orthophotomap of the surveying objects has been made with its help. To determine the precise accuracy of the got results of aerial surveying the checkpoint coordinates according to the orthophotomap have been set. The average square error has been calculated according to the set coordinates applying GNSS measurements. A-priori accuracy estimation of spatial coordinates of the studying territory using the aerial surveying data have been calculated: mx=0.11 m, my=0.15 m, mz=0.23 m in the village of Remeniv and mx=0.26 m, my=0.38 m, mz=0.43 m in the town of Vynnyky. The accuracy of determining checkpoint coordinates has been investigated using images obtained out of UAV and the average square error of the reference points. Based on comparative analysis of the got results of the accuracy estimation of the made orthophotomap it can be concluded that the value the average square error does not exceed a-priori accuracy estimation. The possibility of applying Trimble UX5 UAV for making large-scale orthophotomaps has been investigated. The aerial surveying output data using UAV can be applied for monitoring potentially dangerous for people objects, the state border controlling, checking out the plots of settlements. Thus, it is important to control the accuracy the got results. Having based on the done analysis and experimental researches it can be concluded that applying UAV gives the possibility to find data more efficiently in comparison with the land surveying methods. As the result, the Trimble UX5 UAV gives the possibility to survey built-up territories with the required accuracy for making orthophotomaps with the following scales 1: 2000, 1: 1000, 1: 500.
Źródło:
Reports on Geodesy and Geoinformatics; 2017, 103; 106-118
2391-8365
2391-8152
Pojawia się w:
Reports on Geodesy and Geoinformatics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies