Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neuro-fuzzy system" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Zastosowanie ANFIS w analizie wyników badań gruntów
Application of the ANFIS to analysis of results from soil testings
Autorzy:
Daniszewska, E
Powiązania:
https://bibliotekanauki.pl/articles/391234.pdf
Data publikacji:
2014
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
adaptacyjny system neuronowo-rozmyty
logika rozmyta
trójosiowe badanie gruntu
prędkość ścinania
adaptive neuro-fuzzy inference system
fuzzy logic
soil triaxial testing
shear speed
Opis:
Adaptacyjny system wnioskowania neuronowo-rozmytego ANFIS (Adaptive Neuro-Fuzzy Inference System) w programie Matlab posłużył modelowaniu i określaniu relacji między prędkością ścinania a parametrami wytrzymałościowymi gruntu. Sprawdzono możliwości i umiejętności narzędzia ANFIS w interpretacji wyników badań trójosiowego ściskania iłów pobranych z okolic Olsztyna. Model neuronowo-rozmyty został zbudowany na podstawie zbioru wartości, którymi dysponowano po szeregu badań eksperymentalnych, łącznie z wartościami parametrów wytrzymałościowych gruntu na ścinanie. Baza danych wykorzystana do modelowania neuronowo-rozmytego składa się z 6 różnych parametrów gruntowych dla każdej z 12 prędkości ścinania stosowanych podczas badań trójosiowych. Umiejętność uczenia zweryfikowano na bazie danych testowych - model neuronowo-rozmyty zbudowany został z zestawów szkoleniowych, a dokładność została zweryfikowana przez zestawy testów, z którymi model miał do czynienia po raz pierwszy. Wyniki z modelu ANFIS nie odbiegały znacznie od tych, które zostały uzyskane bezpośrednio z badań fizycznych. System ANFIS okazał się narzędziem niezwykle uniwersalnym i nieskomplikowanym w obsłudze. Pozwolił uwzględnić wieloaspektowość wzajemnych relacji parametrów gruntowych.
The article was analyzed in order to test applicability and capability of the ANFIS tool used for interpretation of results of triaxial shear tests on loamy soils sampled near Olsztyn. The ANFIS system in the Matlab software programme was used to model and determine relationships between the shear stress and soil resistance parameters in a triaxial shear test apparatus. It has been demonstrated that the achieved shear strength parameters are significantly affected by the variables tested during the triaxial experiments and physical parameters of a given soil sample, but also by the loading increment rate during the tests. It is extremely important to adjust the rate of loading during a test according to the preliminary characterization of a tested ground sample so as to have some control over the obtained ground strength parameters. The neuro-fuzzy model has been constructed based on a set of values obtained after a series of experimental tests, including values of ground shear strength parameters. The database used for the neuro-fuzzy modelling consisted of 6 different ground parameters for each of the 12 shear stress rates applied during the triaxial tests. The learnability was verified on a database composed of the test results – a neuro-fuzzy model was built from learning sets and its accuracy was verified by sets of tests to which the model was applied for the first time. The results obtained from the ANFIS model did not diverge substantially from the ones obtained directly by performing the physical tests. The ANFIS proved to be highly universal and easy to operate. It accounted for the multi-faceted nature of interrelationships between ground parameters.
Źródło:
Budownictwo i Architektura; 2014, 13, 2; 7-15
1899-0665
Pojawia się w:
Budownictwo i Architektura
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies