Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "function networks" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Wpływ funkcji okna na skuteczność identyfikacji stanu emocjonalnego mówcy
The impact of window function on identification of speaker emotional state
Autorzy:
Powroźnik, P.
Czerwiński, D.
Powiązania:
https://bibliotekanauki.pl/articles/407680.pdf
Data publikacji:
2017
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
"funkcja okna"
sztuczne sieci neuronowe
identyfikacja polskiej mowy emocjonalnej
window function
artificial neural networks
Polish emotional speech recognition
Opis:
Artykuł prezentuje wpływ doboru funkcji okna wykorzystywanej w procesie obliczania spektrogramu, na skuteczność identyfikacji stanu emocjonalnego mówcy posługującego się mową polską. W badaniach wykorzystano następujące funkcje okna: Hamminga, Gaussa, Dolpha–Czebyszewa, Blackmana, Nuttalla, Blackmana-Harrisa. Ponadto został przedstawiony sposób przetwarzania spektrogramu przez sztuczną sieć neuronową (SSN), odpowiedzialną za identyfikację stanu emocjonalnego mówcy. Otrzymane wyniki pozwoliły na ocenę skuteczności rozpoznawania stanu emocjonalnego za pomocą SSN. Średnia skuteczność wahała się od około 70% do ponad 87%.
The article presents the impact of window function used for preparing the spectrogram, on Polish emotional speech identification.. In conducted researches the following window functions were used: Hamming, Gauss, Dolph–Chebyshev, Blackman, Nuttall, Blackman-Harris. The spectrogram processing method by artificial neural network (ANN) was also described in this article. Obtained results allowed to assess the effectiveness of identification process with the use of ANN. The average efficiency ranged from 70 % to more than 87%.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2017, 7, 4; 96-100
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An enhanced differential evolution algorithmwith adaptive weight bounds for efficient training ofneural networks
Ulepszony algorytm ewolucji różnicowej z adaptacyjnymi granicami wag dla efektywnego szkolenia sieci neuronowych
Autorzy:
Limtrakul, Saithip
Wetweerapong, Jeerayut
Powiązania:
https://bibliotekanauki.pl/articles/27315365.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
neural network
differential evolution
training neural network
function approximation
sieć neuronowa
ewolucja różnicowa
trening sieci neuronowej
aproksymacja funkcji
Opis:
Artificial neural networks are essential intelligent tools for various learning tasks. Training them is challenging due to the nature of the data set, many training weights, and their dependency, which gives rise to a complicated high-dimensional error function for minimization. Thus, global optimization methods have become an alternative approach. Many variants of differential evolution (DE) have been applied as training methods to approximate the weights of a neural network. However, empirical studies show that they suffer from generally fixed weight bounds. In this research, we propose an enhanced differential evolution algorithm with adaptive weight bound adjustment (DEAW) for the efficient training of neural networks. The DEAW algorithm uses small initial weight bounds and adaptive adjustment in the mutation process. It gradually extends the bounds when a component of a mutant vector reaches its limits. We also experiment with using several scales of an activation function with the DEAW algorithm. Then, we apply the proposed method with its suitable setting to solve function approximation problems. DEAW can achieve satisfactory results compared to exact solutions.
Sztuczne sieci neuronowe są niezbędnymi inteligentnymi narzędziami do realizacji różnych zadań uczenia się. Ich szkolenie stanowi wyzwanie ze względu na charakter zbioru danych, wiele wag treningowych i ich zależności, co powoduje powstanie skomplikowanej, wielowymiarowej funkcji błędu do minimalizacji. Dlatego alternatywnym podejściem stały się metody optymalizacji globalnej. Wiele wariantów ewolucji różnicowej (DE) zostało zastosowanych jako metody treningowe do aproksymacji wag sieci neuronowej. Jednak badania empiryczne pokazują, że cierpią one z powodu ogólnie ustalonych granic wag. W tym badaniu proponujemy ulepszony algorytm ewolucji różnicowej z adaptacyjnym dopasowaniem granic wag (DEAW) dla efektywnego szkolenia sieci neuronowych. Algorytm DEAW wykorzystuje małe początkowe granice wag i adaptacyjne dostosowanie w procesie mutacji. Stopniowo rozszerza on granice, gdy składowa wektora mutacji osiąga swoje granice. Eksperymentujemy również z wykorzystaniem kilku skal funkcji aktywacji z algorytmem DEAW. Następnie, stosujemy proponowaną metodę z jej odpowiednim ustawieniem do rozwiązywania problemów aproksymacji funkcji. DEAW może osiągnąć zadowalające rezultaty w porównaniu z rozwiązaniami dokładnymi.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 1; 4--13
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies