Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "semi-learning" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Semi-supervised learning with the clustering and Decision Trees classifier for the task of cognitive workload study
Częściowo nadzorowane uczenie z zastosowaniem klasteryzacji oraz klasyfikatora Drzew Decyzyjnych w przypadku badania obciążenia poznawczego
Autorzy:
Wawrzyk, Martyna
Powiązania:
https://bibliotekanauki.pl/articles/98500.pdf
Data publikacji:
2020
Wydawca:
Politechnika Lubelska. Instytut Informatyki
Tematy:
clustering
semi-supervised learning
eye tracker
klasteryzacja
uczenie częściowo nadzorowane
Opis:
The paper is focused on application of the clustering algorithm and Decision Tress classifier (DTs) as a semi-supervised method for the task of cognitive workload level classification. The analyzed data were collected during examination of Digit Symbol Substitution Test (DSST) with use of eye-tracker device. 26 participants took part in examination as vol-unteers. There were conducted three parts of DSST test with different levels of difficulty. As a results three versions were obtained of data: low, middle and high level of cognitive workload. The case study covered clustering of collected data by using k-means algorithm to detect three clusters or more. The obtained clusters were evaluated by three internal indices to measure the quality of clustering. The David-Boudin index detected the best results in case of four clusters. Based on this information it is possible to formulate the hypothesis of the existence of four clusters. The obtained clus-ters were adopted as classes in supervised learning and have been subjected to classification. The DTs was applied in classification. There were obtained the 0.85 mean accuracy for three-class classification and 0.73 mean accuracy for four-class classification.
Celem artykułu było zastosowanie klasteryzacji wraz z klasyfikatorem Drzew Decyzyjnych jako częściowo nadzoro-wanej metody klasyfikacji poziomu obciążenia poznawczego. Dane przeznaczone do analizy zostały zebrane podczas badania DSST (z ang. Digit Symbol Substitution Test) z użyciem urządzenia eye-tracker. 26 wolontariuszów wzięło udział w badaniu. Zostały przeprowadzone trzy części testu DSST o różnych poziomach trudności. W wyniku tego, otrzymano trzy wersje danych: z niskim, średnim i wysokim poziomem obciążenia poznawczego. Do analizy danych został użyty algorytm klasteryzacji k-means do wyznaczenia trzech lub większej liczby klastrów. Uzyskane klastry zostały poddane ocenie przy użyciu trzech wewnętrznych indeksów w celu zmierzenia jakości klasteryzacji. Indeks David-Boudin’a wykazał najlepsze rezultaty w przypadku istnienia czterech klastrów. Na podstawie tej informacji można sformułować hipotezę, iż dane są podzielone na 4 klastry, co oznaczałoby istnienie dodatkowego poziomu poznawczego. Uzyskane klastry zostały zaadoptowane jako klasy w uczeniu pod nadzorem. Do klasyfikacji danych został użyty klasyfikator Drzew Decyzyjnych . Otrzymano średnią dokładność równą 0.85 w przypadku 3-klasowej klasyfikacji oraz 0.73 średnią dokładność dla 4-klasowej klasyfikacji.
Źródło:
Journal of Computer Sciences Institute; 2020, 15; 214-218
2544-0764
Pojawia się w:
Journal of Computer Sciences Institute
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies